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Abstract— Artificial Swarm Intelligence (ASI) strives to 

facilitate the emergence of a super-human intellect by connecting 

groups of human users in closed-loop systems modeled after bio-

logical swarms. Prior studies have shown that “human swarms” 

can make more accurate predictions than traditional methods for 

tapping the wisdom of groups, such as votes and polls. To further 

test the predictive ability of swarms, 75 random sports fans were 

assembled in the UNU platform for human swarming and tasked 

with predicting College Bowl football games against the spread. 

Expert predictions from ESPN were compared. The results are 

as follows: (i) Individuals – when working alone, test subjects 

achieved on average, 5 correct predictions out of 10 games (50% 

accuracy); (ii) Group Poll – aggregating data across all 75 

subjects, the group achieved 6 correct predictions out of 10 

games (60% accuracy);  (iii) Experts - as published by ESPN, the 

college football experts averaged  5 correct predictions out of 10 

games (50% accuracy); and (iv) Swarm – when the 75 subjects 

worked together as a real-time swarm, they achieved 7 correct 

predictions out of 10 games (70% accuracy).  Thus by forming a 

real-time swarm intelligence, the group of random sports fans 

boosted their collective performance and out-performed experts.  

Keywords— Swarm Intelligence, Artificial Intelligence, Human 

Swarming, Wisdom of Crowds, Collective Intelligence 

I. INTRODUCTION 

In the field of A.I. research, practitioners have regularly 
turned to Mother Nature for inspiration and guidance. Not 
surprisingly, the first path explored was the most familiar – our 
own brains. Beginning with the Perceptrons of the 1950’s and 
continuing to this day, Neural Networks have emerged as the 
dominant biologically inspired model for A.I. research. Nature, 
however, rarely reveals only a single pathway. Billions of years 
of evolution have produced at least one alternate method for 
generating high-level intelligence from smaller building blocks 
and it’s not neural – it’s collective. 

Referred to as Swarm Intelligence (SI), countless species 
are known to amplify a local group’s intellectual ability by 
forming closed-loop systems among large numbers of 
independent organisms. These dynamic systems demonstrate 
that under the right conditions, a collective intelligence can 
emerge that exceeds the capacity of the individual members in 
the group. Artificial intelligence researchers have explored 
swarm-based models for use among groups of networked 
robots and simulated agents [1], but only recently has 
swarming been applied to human networks [2, 3, 4, 5].   

Known as Artificial Swarm Intelligence (ASI), these 
computational methods enable human groups to work together 

in real-time by forming a unified dynamic system that can 
answer questions, make predictions, reach decisions, or take 
actions. As a unified system, human swarms collectively 
explore a decision-space and quickly converge upon preferred 
solutions. Prior studies have shown that by working in swarms, 
human groups can outperform their individual members as well 
as outperform groups taking traditional votes or polls.   

In a prior study, a randomly selected human group was 
tasked with predicting the top awards of the 2015 Oscars, both 
by taking a poll and by forming a swarm [5].  Across 48 
participants, the average poll result achieved 6 of 15 correct 
predictions (40% success). When taking most popular 
prediction in the poll, the group achieved 7 of 15 correct 
predictions (47% success). When working together as a real-
time swarm, the group achieved 11 of 15 correct predictions 
(73% success). This suggests that ASI may be a superior 
method for tapping the wisdom of crowds than traditional 
votes, polls, and surveys.  The present study aims to explore 
this further, fielding a larger swarm of users and tasking them 
with predicting 10 college football games against the spread. In 
addition, the current study aims to compare the performance of 
the human swarm, comprised of randomly selected novices, 
with the performance of individual subject-matter experts.  

II. SWARMS AS INTELLIGENT SYSTEMS 

Among A.I. researchers, the word “swarm” often refers to 
groups of robots or simulated agents governed by simple 
localized rules [1]. These systems are generally inspired by 
flocks of birds and schools of fish, which navigate complex 
environments using similar processes. While such systems 
have many applications, for example enabling robotic drones to 
navigate in unison, the human swarms discussed herein are 
modeled less after the motions of flocks and schools, and more 
after the decision-making processes used by honeybee swarms. 
This is because the decision-making abilities of honeybees 
provide a powerful natural proof of the potential for an 
emergent decentralized parallelized intelligence.  

   As studied by Seeley et al., the processes that govern 
decision-making in honeybee swarms and neurological brains 
are remarkably similar [6]-[9]. Both employ large populations 
of simple excitable units (i.e., bees and neurons) that work in 
parallel to integrate noisy evidence, weigh competing 
alternatives, and converge on decisions in synchrony. In both, 
decisions are arrived at through a real-time competition among 
sub-populations of excitable units, each sub-population vying 
for a different alternative solution. When one sub-population 
exceeds a threshold level of support, the corresponding 



alternative is chosen. The threshold in both brains and swarms 
is not the unanimous support, or even a simple majority, but a 
sufficient quorum of excitation. This helps to avoid deadlocks 
and leads swarms to optimal decisions [10].  

For example, every spring honeybees face a life-or-death 
decision to select a new home location for the colony. From 
hollow trees to abandoned sheds, the colony considers dozens 
of candidate sites over a 30 square mile area, evaluating each 
with respect to dozens of competing criteria.  Does it have 
sufficient ventilation?  Is it safe from predators?  Is it large 
enough to store honey for winter?  It’s a complex problem with 
many tradeoffs and a misstep can mean death to the colony. 
Using body vibrations known as “waggle dances”, hundreds of 
bees express preferences for competing sites based on 
numerous quality factors. Through a real-time negotiation, a 
decision is reached when a sufficient quorum emerges.   

Remarkably, the bees arrive at optimal decisions 80% of 
the time [11]. Thus, although individual bees lack the mental 
capacity to make a decision this complex and nuanced, when 
hundreds of scout bees pool their knowledge and experience, 
they evoke a Collective Intelligence that is not only able to 
reach a decision, it finds an optimal solution.  Thus by working 
together as a unified dynamic system, the colony amplifies its 
intelligence beyond the capacity of individual members. It is 
this emergent amplification of intelligence that human 
swarming aims to enable among groups of networked people. 

III. ENABLING HUMAN SWARMS 

Unlike many social species, human have not evolved the 
natural ability to form a Swarm Intelligence, for we lack the 
subtle connections that other organisms use to establish tight-
knit feedback-loops among members. Schooling fish detect 
vibrations in the water around them. Flocking birds detect 
motions propagating through the group. Swarming bees use 
complex body vibrations. This suggests that to evoke a real-
time Artificial Swarm Intelligence (ASI) among groups of 
networked humans, technology is required to close the loop 
among members. To address this need, an online platform 
called UNU was developed to allow distributed groups of users 
to login from anywhere around the world and participate in a 
closed loop swarming process.   

Modeled after the decision-making of natural swarms, 
UNU allows groups of independent actors to work in parallel 
to (a) integrate noisy evidence, (b) weigh competing 
alternatives, and (c) converge on final decisions in synchrony. 
Because humans can’t waggle dance like honeybees, a novel 
interface had to be developed to allow participants to convey 
their individual intent with respect to a set of alternatives. In 
addition, the interface had to be crafted to allow users to 
perceive and react to the changing system in real-time, thereby 
closing a feedback loop around the full population. 

As shown in Figure 1, users of UNU answer questions by 
collectively moving a graphical puck to select among a set of 
alternatives. The puck is modeled as a physical system with a 
defined mass, damping and friction. Users provide input by 
manipulating a graphical magnet with a mouse or touchscreen. 
By positioning their magnet, users impart their personal intent 
as a force vector on the puck. The input from each user is not a 

discrete vote, but a stream of vectors that varies freely over 
time. Because the full set of users can adjust their intent at 
every time-step, the puck moves, not based on the input of any 
individual, but based on the dynamics of the full system. This 
results in a real-time physical negotiation among the members 
of the swarm, the group collectively exploring the decision-
space and converging on the most agreeable answer.  

     

Fig 1. A human swarm comprised of user-controlled magnets. 

We must note that users can only see their own magnet 
during the decision, not the magnets of others users. Thus, 
although they can view the puck’s motion in real time, which 
represents the emerging will of the swarm, they are not 
influenced by the specific breakdown of support across the 
available options. This limits social biasing. For example, if the 
puck slows due to an emerging deadlock, the participants must 
evaluate their own willingness to shift support to alternate 
options without knowing the distribution of support that caused 
the deadlock. After each decision is over, users can view a 
replay of all the magnets, allowing them to reflect on how their 
contribution combined with others to produce the final answer. 

  

Fig 2. A snapshot of a swarm answering a question. 

In Figure 2 above, an example question is shown as it 
appears simultaneously on the screens of all participants. In 



this trial, a swarm of 90 users was asked a politically charged 
question: “What should be Congress’s top priority?”  Users are 
then given a 3,2,1 countdown to coordinate the start of the 
session. The swarm then springs into action, working in 
synchrony to guide the puck to a preferred answer. 

The decision process is generally a complex negotiation, 
with individuals shifting their support numerous times to break 
deadlocks or defend against options they disfavor. When a user 
pulls towards one option in the answer set, a component of 
their force also acts to impede the motion of the puck towards 
competing options. In this way, users don’t only add support a 
preferred solution when pulling towards it, but also suppress 
solutions they don’t prefer. This enables the dual process seen 
in natural swarms and neurological brains wherein individual 
agents are enabled to both excite and inhibit [8], thereby 
reducing the chances of a deadlock.  

If a group happens to be in substantial agreement at the 
start of the question, the puck moves smoothly to the preferred 
answer. But, if two or more competing options have significant 
support, the swarm negotiates as a unified system. Most users 
begin by pulling towards the option they prefer most, then shift 
to alternate choices if the puck starts moving towards an option 
they dislike. With all users making these changes in parallel, 
the swarm explores the decision space and converges on an 
answer that optimizes group satisfaction. 

It’s important to note that users don’t just vary the direction 
of their input, but also the magnitude by adjusting the distance 
between the magnet and the puck. Because the puck is in 
motion, to apply full force users need to continually move their 
magnet so that it stays close to the puck’s rim. This is 
significant, for it requires all users to be engaged during the 
decision process. If they stop adjusting their magnet to the 
changing position of puck, the distance grows and their applied 
force wanes. Thus, like bees executing a waggle dance or 
neurons firing activation signals, the users in an artificial 
swarm must continuously express their changing preferences 
during the decision process or lose their influence over the 
outcome. 

Post testing interviews with participants suggest that users 
with high levels of conviction in favor of a particular outcome 
are more vigilant in maintaining maximum force on the puck. 
Conversely, users who have lower conviction are less vigilant. 
In this way, the swarming interface allows the population to 
convey varying levels of conviction in real-time synchrony. 
We believe this helps the swarms converge on solutions that 
optimize the overall satisfaction of the group. 

Observations and post-testing interviews also reveal that 
human swarming yields consistent outcomes across varying 
spatial placement of answer options. For example, if two 
highly favored options are placed on opposite sides of the 
puck’s starting position, the swarm will fall into an early 
deadlock as it grapples between them. Conversely, if the two 
highly favored options are placed on the same side of the 
puck’s starting position, the swarm will not fall into an early 
deadlock, but instead move the puck towards those two highly 
favored options. Still, a deadlock will emerge as the puck 
approaches midpoint between the two favored options. In this 
way, the decision space can have alternate layouts, but the 

swarm arrives at the same outcome. A similar robustness has 
been observed in honeybee swarms, which are known to decide 
upon optimal nesting locations regardless of the order in which 
sites are discovered and reported by scout bees [11].   

Referring again to Figure 2 the default layout of answers is 
a set of six options in a hexagon pattern. The hexagonal 
configuration was chosen because according to social-science 
research, people are efficient decision-makers when presented 
with up to six options, but suffer from increasing “choice-
overload” inefficiencies when confronted with larger sets [12]. 
To enable swarms to consider larger sets of answers, the 
system employs an iterative approach, presenting users with a 
series of six-option subsets of the full answer pool, then pitting 
the winner of each subset against each other. The system also 
allows swarms to select values on a continuous scale. This 
enables swarms to collectively decide upon quantities, prices, 
percentages, odds and other numerical values.  

As shown in Figure 3 below, a swarm of users was asked to 
decide upon the fair price of a movie ticket on a scale from $0 
to $25. When using scale-based layout, the puck starts at the 
center of the range and can move smoothly in either direction. 
The swarm generally overshoots the final answer, then reverses 
direction, oscillating in narrower and narrower bands. An 
answer is chosen when the puck settles upon a value for more 
than a threshold amount of time (e.g., 3 seconds). 

 

Fig 3. A sample scale-based layout for human swarming 

For the current set of tests, range-style questions we asked, 
allowing users to predict both the winner and the point spread 
of each bowl game.  

IV. PERFORMANCE TESTING 

To assess the predictive ability of  human swarms, a formal 
study was conducted with 75 randomly selected subjects. Each 
participated in the experiment via online access. The only 
requirement for participation was that each subject was self-
identified as a college football fan. Each subject was paid 
$2.00 for their participation, which required them to make 
predictions for the outcome of 10 college bowl football games, 



first by on a blind poll using Survey Monkey, then as part of a 
real-time human swarm using the UNU platform. In addition, 
the researchers documented the predictions made by ESPN 
experts for the same games [13]. Finally, the researchers 
documented the Las Vegas point-spreads for each of the ten 
games, which are designed by bookmakers to make each 
prediction as close to a 50/50 proposition as possible.    

When responding on the Survey Monkey poll, each 
individual gave their own prediction about (a) which team 
would win each of the 10 games, and (b) by how many points 
would they win the game (point spread).  This allowed for 
predictions to be made against the spread, without explicitly 
informing the subjects with what the spread was.  

When working as a swarm, the participants were instructed 
to move the graphical puck along a linear axis labeled with the 
names of each team competing in a game. As the puck moved 
along the axis, the closer to a particular team name, the higher 
the chosen point spread victory for this team. Figure 4 shows a 
screenshot for the Rose Bowl game, wherein the swarm 
predicted Stanford University would win by 8 points. It’s 
important to note that although Figure 4 shows all magnets 
displayed, the subjects were only able to see their own magnet, 
and thus could not see the pull directions of others.  

     

              Fig 4. Screenshot of Swarm predicting Rose Bowl 

 

It should be noted that when predicting the 10th game (both 
by poll and by swarm), a point spread was not used because the 
10th game depended upon the outcome of prior games.  There 
were 4 possible winners of the final College Playoff game, the 
subjects asked to predict which of the four teams would 
prevail. The ESPN experts did the same.  

V. RESULTS 

Looking first at the poll results, we find that on average, 
across 75 participants, the individuals made 5 correct picks for 
the 10 games. This equates to 50% accuracy against the spread, 
which is not impressive but confirms that the Las Vegas odds-
makers are skilled at what they do, picking spreads that for 
average individuals, made each bet an approximate toss-up 
among the competing teams. 

Next we computed the most popular predictions in the 
survey across all 75 subjects. This can be viewed as a 
collective pick that taps the wisdom of crowds using traditional 
polling. The group, as a collective, got 6 correct picks out the 
10 games in question, yielding 60% accuracy.  This supports 
prior research into collective intelligence which suggest that 
groups amplify their intelligence when averaging predictions.  

Next we compared the swarm results wherein the group of 
75 participants worked together as a real-time unified system. 
The swarm produced 7 correct picks, yielding 70% accuracy.  
This supports prior studies that show human swarming to be a 
more effective means of tapping the collective intelligence of 
groups than votes, polls, and surveys.  

Comparing the swarm’s 7 correct predictions against the 
individual picks made by the 75 participants, it was found that 
the swarm outperformed 95% of participants. Thus, by 
working together as a real-time swarm, 95% of the subjects 
would have been better off going with the predictions made by 
the Artificial Swarm Intelligence than their own picks. This 
suggests that the ASI achieved a level of intelligence (with 
respect to this defined task) that was superior to the intelligence 
of the individual participants who comprised the swarm. 

   Finally we compared the swarm’s predictions to those of 
the experts at ESPN. Based on publically published picks, 
ESPN experts made 5 correct predictions against the spread for 
the 10 games, yielding 50% accuracy.  Thus, although their 
predictions were made with professional expertise, they were 
unable to beat the Las Vegas odds.  The swarm, however, did 
beat the odds by a good margin.  In this way, a human swarm 
of 75 sports fans, working as a unified system, produced more 
accurate results than the topic-specific experts at ESPN.  

As a final comparison, we computed the payouts that would 
result if bets were by each of the parties. Because the swarm 
picked two longshots, and only lost games that were toss-ups 
(i.e. had nearly even odds), it did very well.  The ESPN experts 
on the other hand, lost both longshot. Had the ESPN experts 
placed $10 on each of their picks, would have lost $24 of their 
$100 bet (-24% ROI).  The swarm, on the other hand, would 
have won $34 across the ten games (+34% ROI).  This further 
supports the possibility that swarming can amplify intelligence, 
allowing groups to behave as topic-specific experts.  

VI. DISCUSSION AND CONCLUSIONS 

Can swarms of average people rival the predictive abilities 
of topic-specific professionals? The results of this study, along 
with prior studies, suggest this might be the case.  Furthermore, 
swarming appears to be a more effective method of tapping the 
wisdom of groups than traditional methods, like votes and 
polls.  This may be because unlike polls, which collect data 
from individuals in isolation, swarms enable groups to 
negotiate in real-time synchrony, adjusting and adapting as 
decisions emerge before their eyes. The members of a swarm 
don’t express static views, but continually assess and reassess 
their own convictions with respect to each of the possible 
outcomes, weighing their personal confidence and preferences. 
With all participants doing this in parallel, the swarm 
converges on solutions that reflect the collective will of the 
group, tuned by each individual’s unique level of confidence.  



Because of the potential of human swarming to enable 
groups to combine their knowledge and intuition in real-time, 
swarming likely offers the greatest benefit when groups make 
complex decisions on topics that can be assessed from many 
unique perspectives.  This parallels the benefits of swarming 
among honeybees, where the decision to pick a new home-site 
must be evaluated across numerous competing factors.  In fact, 
when honeybee swarms choose a new colony site, they 
consider dozen of locations, each evaluated with respect to at 
least six independent attributes. Despite the complexity of the 
decisions involved, honeybee swarms have been documented 
as making nearly optimal decisions most of the time [11]. 

Looking forward, this experiment supports the possibility 
that artificial swarms of networked humans have the potential 
to produce an emergent intelligence that exceeds the 
intellectual abilities of the individual participants for certain 
tasks.  This could lead to the development of a networked 
super-intelligence that keeps humans in the loop.  The fact that 
human participants are central to the emergent intelligence is 
promising, for it suggests that our human interests, values, and 
morals would be integrated into to the process, achieving a 
safer path to super-intelligence than a purely digital A.I.  
Further research is needed, exploring how increasing the size 
of swarms impacts the emergent intelligence produced.   
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