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Abstract— In the natural world, Swarm Intelligence (SI) is a 

commonly occurring process in which biological groups amplify 

their collective intelligence by forming closed-loop systems.  It is 

well known in schools of fish, flocks of bird, and swarms of bees.  

In recent years, new AI technologies have enabled networked 

human groups to form systems modeled after natural swarms.  

Known as Artificial Swarm Intelligence (ASI), the technique has 

been shown to amplify the effective intelligence of human groups. 

This study compares the predictive ability of ASI systems against 

large betting markets when forecasting sporting events.  Groups 

of average sports fans were tasked with predicting the outcome of 

200 hockey games (10 games per week for 20 weeks) in the NHL.  

The expected win rate for Vegas favorites was 62% across the 200 

games based on the published odds. The ASI system achieved a 

win rate of 85%. The probability that the system outperformed 

Vegas by chance was extremely low (p = 0.0057), indicating a 

significant result.  In addition, researchers compared the winnings 

from two betting models – one that wagered weekly on the Vegas 

favorite, and one that wagered weekly on the ASI favorite.  At the 

end of 20 weeks, the Vegas model generated a 41% financial loss, 

while the ASI model generated a 170% financial gain.    

Keywords— Swarm Intelligence, Artificial Swarm Intelligence, 

Collective Intelligence, Human Swarming, Artificial Intelligence. 

I. BACKGROUND 

Prior studies on Artificial Swarm Intelligence (ASI) have 
shown that by forming real-time “human swarms,” networked 
human groups can significantly amplify their accuracy in a wide 
variety of forecasting tasks [1-6], outperforming traditional 
“Wisdom of Crowd” methods [3]. For example, a 2015 study 
assessed the ability of human swarms to forecast the outcome of 
college football games.  An ASI swarm comprised of 75 amateur 
sports fans, connected by AI algorithms, was tasked with 
predicting 10 bowl games. As individual forecasters, the 
participants averaged 50% accuracy when predicting outcomes 
against the Vegas spread. When forecasting as a real-time ASI 
system, those same participants achieved 70% accuracy against 
the Vegas spread [2]. Similar increases have been demonstrated 
in other studies, including a 5-week study that tasked human 
participants, connected as an ASI system, with predicting 50 
consecutive soccer matches in the English Premier League.  
Results showed a 31% increase in accuracy when participants 
were connected in ASI swarms [4]. The ASI system also 
outperformed the BBC’s machine-model known as “SAM” over 
the same 50 games.  [13]. 

While prior studies have documented the ability of artificial 
swarms to outperform individuals and outperform traditional 
Wisdom of Crowd methods across a range of forecasting tasks, 
no formal study has compared the predictive ability of artificial 
swarms against largescale markets. To address this need, a study 
was run to compare human swarms to Vegas betting markets, 
assessing the accuracy rates and the financial returns across a 
large set of predictions. Specifically, this study required human 
participants to forecast the outcome of 200 games in the 
National Hockey League (NHL), structured as 10 games per 
week for 20 consecutive weeks.  

II. SWARMS VS CROWDS 

 When comparing the accuracy of real-time swarms against 
traditional crowd-based methods, it’s worth reviewing the 
structural differences between them.  The prime differentiator 
between “crowds” and “swarms” is that in crowd-based 
methods, human participants provide input in isolation for 
aggregation in external statistical models, while in swarm-based 
methods, human participants “think together” in real-time, their 
interactions governed by intelligence algorithms. This means 
that swarms are closed-loop systems in which participants act, 
react, and interact with each other, converging on optimized 
solutions in synchrony. The swarming process is generally 
modeled after biological systems such as schools of fish, flocks 
of birds, and swarms of bees. The present study uses Swarm AI 
technology from Unanimous AI Inc, which is modeled largely 
on the decision-making processes of honeybee swarms [4].  

As background, the decision-making processes that govern 
the behavior of honeybee swarms have been studied since the 
1950s and have revealed themselves to be very similar to the 
decision-making processes in neurological brains [7-9]. Both 
brains and swarms employ large populations of simple excitable 
units (i.e., bees and neurons) that operate in parallel to integrate 
noisy evidence, weigh competing alternatives, and converge on 
decisions in synchrony. In both, outcomes are reached through 
real-time competition among sub-populations of excitable units. 
When the support generated by one sub-population exceeds a 
threshold level, that alternative is chosen. In honeybees, this 
enables the group to converge on optimal decisions, picking the 
best solution to complex problems 80% of the time [11,12]. 



 

III. ENABLING “HUMAN SWARMS” 

Unlike birds and bees and fish, humans have not evolved the 
natural ability to form closed-loop systems that enables real-
time swarming.  We lack the subtle connections that other 
organisms use to establish high speed feedback-loops among 
members. Schooling fish detect vibrations in the water around 
them. Flocking birds detect subtle motions propagating through 
the population. Swarming bees use complex body vibrations 
called a “waggle dance.” To enable real-time swarming among 
groups of networked humans, specialized software is required to 
close the loop among all members.  

To address this need, a software platform (swarm.ai) was 
developed to enable networked human populations to form real-
time swarms by connecting from anywhere in the world [1]. 
Modeled on the decision-making process of honeybee swarms, 
the cloud-based swarm.ai system enables groups of users to 
work in parallel to (a) integrate noisy evidence, (b) weigh 
competing alternatives, and (c) converge on decisions in 
synchrony, while also allowing all participants to perceive and 
react to the changing system in real-time, thereby closing a 
feedback loop around the full population of participants.   

As shown in Figure 3 below, the human participants of ASI 
systems answer questions by moving a graphical puck to select 
among a set of alternatives. Each participant provides input by 
manipulating a graphical magnet with a mouse, touchscreen, or 
other input device. By positioning their magnet with respect to 
the moving puck, real-time participants express their personal 
intent, impacting the system as a whole. The input from each 
user is not a discrete vote, but a continuous stream of vectors 
that varies freely over time. Because all  members of the 
swarming population can adjust their intent fluidly in real-time, 
the ASI swarm explores the decision-space, not based on the 
input of any individual, but based on the emergent dynamics of 
the full system. This enables complex deliberations across all 
members at once, empowering the group to collectively explore 
all the options and converge upon the one solution that best 
represents their combined insights. 

 

 

 

 

 

 

 

 

 

 

  Fig. 3. A human swarm choosing between options 

It is important to note that participants do not only vary the 
direction of their intent, but also modulate the magnitude of their 
intent by adjusting the distance between their magnet and the 
puck. Because the puck is in continuous motion across the 
decision-space, users need to continually move their magnet so 

that it stays close to the puck’s outer rim. This is significant, for 
it requires participants to be engaged continuously throughout 
the decision process, evaluating and re-evaluating their intent. If 
they stop adjusting their magnet with respect to the changing 
position of the puck, the distance grows and their applied 
sentiment wanes.  

Thus, like bees vibrating their bodies to express sentiment in 
a biological swarm, or neurons firing activation signals to 
express conviction levels within a biological neural-network, the 
participants in an artificial swarm must continuously update and 
express their changing preferences during the decision process, 
or lose their influence over the collective outcome.  In addition, 
intelligence algorithms monitor the behaviors of all swarm 
members in real-time, inferring their implied conviction based 
upon their relative motions over time.  This reveals a range of 
behavioral characteristics within the swarm population and 
weights their contributions accordingly, from entrenched 
participants to flexible participants to fickle participants. 

IV. PREDICTION STUDY 

To assess the ability of human swarms to outperform Vegas 
betting markets, a formal study was conducted over a 20-week 
period using groups of randomly selected human subjects from 
a pool of self-reported sports enthusiasts. Each weekly group 
consisted of 25 to 36 participants, all of whom logged in 
remotely to the cloud-based swarm.ai system. Human subjects 
were paid $3.00 for their participation in each weekly session, 
which required them to make predictions of the outcome of all 
ten hockey games being played that night, participating both as 
(a) individuals reporting on a standard online survey, and (b) as 
part of a real-time ASI system.   

  For each hockey game, participants were tasked with 
forecasting the winner and the margin of victory, expressed as 
either (a) the team win by 1 goal, or (b) the team win by 2 or 
more goals. The margins were chosen to match common Vegas 
gambling spreads. Figure 4 below shows a snapshot of a human 
swarm comprised of 31 participants in the process of predicting 
a match between Toronto and Calgary.   

 

Fig. 4. Human Swarm in the process of forecasting an NHL game 

 

As shown in Figure 4, each real-time swarm is tasked with 
selecting from among four outcome options, indicating which 
team will win and which margin is most likely. Again, the 
pparticipants do not cast discrete votes but express their intent 



 

continuously over time, converging together as a system. The 
image shown in Figure 4 is a snapshot of the system as it moves 
across the decision-space and converges upon an answer, a 
process that generally takes between 10 and 60 seconds.   

In addition to forecasting each individual game, participants 
were asked to identify which of the weekly predictions is the 
most likely to be a correct assessment.  In other words, which of 
the teams forecast to win their games should be deemed the 
“pick of the week” by virtue of being the most likely to win their 
game.  Figure 5 below shown an example ASI system in the 
process of identifying the pick of the week. 

 

Fig. 5. Human Swarm in process of identifying “Pick of the Week” 

V. WAGERING PROTOCOL 

By collecting predictions for each of the 10 weekly games as 
well as a top “pick of the week”, forecasting data was collected 
across all 20 weeks for accuracy comparison against Vegas 
betting markets. To enable ROI comparisons against betting 
markets, two standardized betting models were tracked across 
the 20-week period.  In both models, an initial simulated betting 
pool of $100 was created as the starting point for ROI 
computations, the pools tracked over the 20-week period.   

In “Wagering Model A,” a simple heuristic was defined 
which allocated weekly bets equal to 15% of the current betting 
pool, dividing it equally across all ten weekly forecasts made by 
the ASI system.  In “Wagering Model B,” a similar heuristic was 
defined which also allocated 15% of the current betting pool for 
use in weekly bets, but placed the entire 15% upon the one game 
identified as “pick of the week”.  Both pots were tracked over 
the 20-week period, using actual Vegas payouts to compute 
returns. Vegas odds used in this study were captured from 
www.sportsbook.ag, a popular online betting market. 

VI. RESULTS 

Across the set of 200 games forecast by the ASI system, an 
accuracy rate of 61% was achieved. This compares favorably to 
the expected accuracy of 55% based on Vegas odds (p=0.0665). 
Of course, the more important skill in forecasting sporting 
events is identifying which games can be predicted with high 
confidence as compared to those games which are too close to 
call. This skill is reflected in the “pick of the week” generated 
by the ASI system. Across the 20 weeks, the system achieved 
85% accuracy in correctly predicting the winner of the “pick of 

the week” game.  This compares very favorably to the expected 
accuracy of 62% based on Vegas odds.  

Figure 6 below shows the distribution of Vegas Odds for the 
twenty selected “pick of the week” games. As described above, 
the swarm-based system had a win rate of 85% across these 
same games. This is a significant improvement, equivalent to 
reducing the error in Vegas Odds by 61%. The probability that 
the swarm outperformed Vegas Odds by chance was extremely 
low (p = 0.0057), indicating a highly significant result. 

  

Fig 6. Summary of results across 20 weeks of NHL predictions 

In addition, a betting simulation was run for each prediction 
set in which 15% of the current bankroll was bet on each 
prediction in each week. The performance of this model when 
betting against Vegas (and including the Bookie’s cut) is seen 
below in Figure 7. Starting with $100 and investing each week 
according to this strategy, the Pick of the Week strategy results 
in a gain of $270.20, equivalent to a 20-week ROI of 170%, and 
a week-over-week average ROI of 5.09%. For comparison, 
betting on all of the swarm’s picks evenly (for a total of 15% of 
the bankroll) results in $121.82, or a 20-week ROI of 21.8%, 
indicating that the swarm is selecting better than randomly 
among its picks.  

 

            Fig 7. Cumulative Betting Performance across 20 weeks 



 

 While the above results are impressive, especially the 170% 
ROI over 20 weeks, we can gain additional insight into the 
significance of this outcome by comparing against additional 
baselines.  For example, we can (a) compare these results to 
randomly placed bets across all games played as a means of 
assessing if the swarm bets across all games are as significant as 
they appear, and (b) compare these results to bets placed on the 
Vegas favorite each week as a means of assessing if betting on 
the swarm’s top picks each week is as impressive as it seems.   

 These baselines are shown in Figure 8 as the green line and 
red line respectively.  Looking first at random betting across all 
games, the net outcome across 20 weeks was $72.39, which 
equates to 28% loss over the test period.  This is significantly 
worse than the $122 (22% gain) achieved by betting on all 
swarm-based forecasts. Even more surprising, betting on the 
Vegas favorites each week resulted in a net outcome of $59, 
which equates to a 41% loss over the 20-week test period.  This 
is significantly worse than the $270 (170% gain) achieved by 
betting on the swarm’s top picks.   

 

    Fig 8. Swarm Performance vs Baseline Performance across 20 weeks 

 

VII. CONCLUSIONS 

Can real-time “human swarms” outperform the predictive 
abilities of largescale betting markets? The results of this study 
suggest this may be the case. As shown across a set of 200 NHL 
games during the 2017-2018 hockey season, an ASI system 
comprised of 25 to 36 average sports fans, connected by 
intelligence algorithms, significantly out-performed Vegas in 
predictive accuracy. The results were strongest when the ASI 
system was tasked with identifying a “pick of the week” as the 
most likely game to achieve the predicted outcome. Across the 
20 weeks, the system achieved 85% accuracy when predicting 
the “pick of the week”, which compares very favorably to the 
expected accuracy of 62% based on Vegas odds. The probability 

that the system outperformed Vegas by chance was extremely 
low (p = 0.0057), indicating a highly significant result. 

 In addition, when using the “pick of the week” as part of an 
automated wagering heuristic, a simulated betting pool that 
began at $100 at the start of the experiment, increased to $270 
over the 20-week period based on the swarm-based predictions. 
This corresponds to an impressive return on investment (ROI) 
of 170% across the testing period.  Additional work is being 
conducted to optimize this heuristic, as there appears to be room 
for improvement when generating Vegas wagers based on a 
swarm-based predictive intelligence. 
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