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Abstract— Artificial Swarm Intelligence (ASI) enables human 

groups to form real-time systems modeled on natural swarms.  

Prior studies have shown that by thinking together in “swarms,” 

networked human groups can significantly amplify their collective 

intelligence and produce more accurate forecasts than traditional 

methods. The present study explores whether the real-time 

behavioral data collected during “swarming” can be used to 

further increase the accuracy of forecasts. To do this, a dense 

neural network was used to process the deliberation data collected 

during swarming and generate a Conviction Index (CI) that 

reflects the expected accuracy of each forecast.  This method was 

then tested in an authentic forecasting task – wagering on sporting 

events against the Vegas odds.  Specifically, groups of sports fans, 

working as real-time swarms, were tasked with predicting the 

outcome of 213 NBA games over 25 consecutive weeks. As a 

baseline, the swarms achieved an impressive 25% net return on 

investment (ROI) against the Vegas Odds.  This was compared to 

an enhanced method that used Conviction Index to estimate the 

strength of each forecast and wager only on forecasts of sufficient 

conviction. The CI-selected wagers yielded a 48% net ROI against 

Vegas Odds.  This is a significant gain, equivalent to more than a 

171% increase in ROI. The probability that the CI-selected wagers 

outperformed by chance was low (p < 0.01).   

Keywords— Swarm Intelligence, Artificial Swarm Intelligence, 

Collective Intelligence, Human Swarming, Artificial Intelligence, 

Machine Learning, Sports Forecasting, Optimized Decision Making, 
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I. INTRODUCTION  

The technology of Artificial Swarm Intelligence (ASI) has 
been shown to amplify the predictive accuracy of networked 
human groups [1, 2]. Prior studies have shown that real-time 
“human swarms” can produce more accurate forecasts than 
traditional “Wisdom of Crowd” methods such as votes, polls, 
and surveys [3]. For example, a 2015 study tested the ability of 
human swarms to forecast the outcome of college football 
games.  A swarm comprised of 75 amateur sports fans was 
tasked with predicting 10 college bowl games. As individuals, 
the participants averaged 50% accuracy when predicting 
outcomes against the spread. When thinking together in real-
time swarms, those same participants achieved 70% accuracy 
against the spread [2]. Similar increases have been found in 
other studies, including a five-week study that tasked human 
participants with predicting a set of 50 soccer matches in the 
English Premier League.  Results showed a 31% increase in 
accuracy when participants were connected in swarms [4]. The 
human swarms also outperformed the BBC’s machine-model 

known as “SAM,” which achieved 64% accuracy over the same 
50 games  [11].  Human swarms have also been shown to 
outperform largescale betting markets, such as one 20-week 
study where human swarms predicted the outcome of 200 
National Hockey League games. The swarms were shown to 
reduce the expected error rate in Vegas Odds by 61% on a subset 
of games [12].  

While prior studies have documented the ability of artificial 
human swarms to amplify the predictive ability of human 
populations and outperform individual forecasters, statistical 
aggregations from large crowds of forecasters, computer 
models, and largescale betting markets, no formal study has 
studied the estimation of expected accuracy of swarm forecasts 
with machine learning. Such a machine learning model would 
allow deeper insights into human swarm behavior, paving the 
way for the optimization of ASI systems and the widespread 
application of swarm-based forecasting to diverse problems, 
such as financial, geopolitical, or sports forecasting.  

To address this, the current study develops a machine 
learning model that processes the behavioral data from human 
swarms, generates a Conviction Index (CI) that reflects the 
expected accuracy of the swarm, and predicts the expected ROI 
of placing a bet on the game against a largescale betting market 
(i.e. the published Vegas odds). The study then pits the machine 
learning model against Vegas, computing financial returns for 
theoretical bets placed against the real-world odds and payouts 
in a full season of the National Basketball Association (NBA). 
The model’s betting success against Vegas is compared to a 
naïve model of betting on all games. The present study 
considered 25 consecutive weeks of NBA games, requiring 
human swarms to forecast between six and eleven games per 
week, for a total of 213 games predicted.   

The study is organized as follows: in Section II, we introduce 
human swarms as intelligent systems and discuss biological 
models of swarm-based decision-making. In Section III, a 
technology platform for real-time human swarming (swarm.ai) 
is introduced, and examples of swarms are provided. The 
method behind the study is described in Section IV, and the 
results of the study are analyzed in Section V.  

II. SWARMS AS INTELLIGENT SYSTEMS 

The primary difference between “crowds” and “swarms” is 
that in crowd-based methods, individual participants provide 
their input in isolation (for statistical aggregation after the fact), 
while in swarm-based methods, groups “think together” as real-



time systems governed by intelligence algorithms and converge 
on solutions in synchrony. The swarming process is generally 
modeled after biological systems such as schools of fish and 
swarms of bees. The present research uses Swarm AI technology 
from Unanimous A.I. Inc, which is modeled largely on 
honeybee swarms.  This model was chosen for the current study 
because honeybee swarms are known to significantly amplify 
the accuracy of critical decisions by enabling members to form 
real-time systems – i.e. “hive minds” – that can solve problems 
as a unified and amplified intelligence.  

The decision-making processes that govern the behavior of 
honeybee swarms have been studied since the 1950s and have 
been shown to be remarkably similar to the decision-making 
processes in neurological brains [5,6]. Both employ large 
populations of simple excitable units (i.e., bees and neurons) that 
work in parallel to integrate noisy evidence, weigh competing 
alternatives, and converge on decisions in synchrony. In both, 
outcomes are arrived at through a real-time competition among 
sub-populations of excitable units. When one sub-population 
exceeds a threshold level of support, the corresponding 
alternative is chosen. In honeybees, this enables the group to 
converge on optimal decisions, picking the best solution to 
complex problems (i.e. selecting a new home location) over 80% 
of the time [7,8,9]. 

The similarity between “brains” and “swarms” becomes 
even more apparent when comparing decision-making models 
that represent each.  For example, the decision process in 
primate brains is often modeled as mutually inhibitory leaky 
integrators that aggregate incoming evidence from competing 
neural populations [10]. A common framework for primate 
decision is the Usher-McClelland model in Figure 1 below.  

 

 

    Fig. 1. Usher-McClelland model of neurological decision-making 
  

 This neurological decision model can be directly compared 
to swarm-based decision models, for example the honey-bee 
model represented in Figure 2 below. As shown, swarm-based 
decisions follow a very similar process, aggregating input from 
sub-populations of swarm members through mutual excitation 
and inhibition, until a threshold is exceeded.  
  

 

    Fig. 2. Mutually inhibitory decision-making model in bee swarms 

 When viewed in this context, it becomes apparent that while 
brains are systems of neurons structured so intelligence emerges, 
swarms are systems of brains structured so amplified 
intelligence emerges.  Thus, the objective of the current study is 
to connect human sports enthusiasts into synchronous systems 
that are structured so that an amplified intelligence emerges. 

III. ENABLING “HUMAN SWARMS” 

Unlike many other social species, humans have not evolved 
the natural ability to form closed-loop systems that enable real-
time swarming. That’s because we lack the subtle connections 
that other organisms use to establish high speed feedback-loops 
among members. Schooling fish detect vibrations in the water 
around them. Flocking birds detect subtle motions propagating 
through the population. Swarming bees use complex body 
vibrations called a “waggle dance.” To enable real-time 
swarming among groups of networked humans, specialized user 
interfaces, intelligence algorithms, and networking paradigms 
are required to close the loop among all members.  

To address this need, a technology called Swarm AI was 
developed to enable human groups to congregate online as real-
time swarms, connecting synchronously from anywhere in the 
world [1]. Modeled after the decision-making process of 
honeybee swarms, the online system allows groups of 
distributed users to work in parallel to (a) integrate noisy 
evidence, (b) weigh competing alternatives, and (c) converge 
on decisions in synchrony, while also allowing all participants 
to perceive and react to the changing system in real-time, 
thereby closing a feedback loop around the full population of 
participants.   

As shown in Figure 3, swarms answer questions by moving 
a graphical puck to select among a set of alternatives. Each 
participant provides input by manipulating a graphical magnet 
with a mouse or touchscreen. By positioning their magnet with 
respect to the moving puck, real-time participants express and 
impart their personal intent on the swarm as a whole. The input 
from each user is not a discrete vote, but a stream of vectors that 
varies freely over time. Because the full population of users can 
adjust their intent continuously in real-time, the swarm moves, 
not based on the input of any individual, but based on the 
dynamics of the full system. This enables a complex negotiation 
among all members at once, empowering the group to 



collectively explore the decision-space and converge on the 
most agreeable solution in synchrony. 

It is important to note that participants do not only vary the 
direction of their intent, but also modulate the magnitude of their 
intent by adjusting the distance between their magnet and the 
puck. Because the puck is in continuous motion across the 
decision-space, users need to continually move their magnet so 
that it stays close to the puck’s outer rim. This is significant, for 
it requires participants to be engaged continuously throughout 
the decision process, evaluating and re-evaluating their intent as 
they convey their contribution. If they stop adjusting their 
magnet with respect to the changing position of the puck, the 
distance grows and their applied sentiment wanes.  

Fig. 3. A human swarm answering a question in real-time 
 

Thus, like bees vibrating their bodies to express sentiment in 
a biological swarm, or neurons firing activation signals to 
express conviction levels within a biological neural-network, the 
participants in an artificial swarm must continuously update and 
express their changing preferences during the decision process, 
or lose their influence over the collective outcome.  In addition, 
intelligence algorithms monitor the behaviors of all swarm 
members in real-time, inferring their implied conviction based 
upon their relative motions over time.  This reveals a range of 
behavioral characteristics within the swarm population and 
weights their contributions accordingly, from entrenched 
participants to flexible participants to fickle participants.  

IV. SWARM CONVICTION STUDY 

To assess whether the behavioral patterns within the 
deliberation data from human swarms can be used to estimate 
the expected accuracy of forecasts, a formal study was 
conducted using groups of randomly selected human subjects 
from a pool of self-reported NBA enthusiasts. Each weekly 
group consisted of 28 to 43 participants, all of whom logged in 
remotely to the Swarm system. Each subject was paid $4.00 for 
their participation in each weekly session, which required them 
to predict of the outcome of all of the basketball games being 
played that night, first as (a) individuals on a standard online 

survey, and then (b) as part of a real-time swarm comprised of 
the full population.     

 Across the 25-week period, predictions were generated by 
for between six and eleven games per week for a total of 213 
games.  For each game, participants were required to work 
together as an ASI system to forecast the winner of each game, 
and converge on their collective level of confidence in this 
forecast (“Low Confidence” or “High Confidence”). 
Participants were then asked to predict, by working together as 
a swarm, how much the team they picked would win by, on a 
scale from “1” to “15+” points.  

 Figure 4 shows a snapshot of a human swarm comprised of 
32 participants in the process of predicting the outcome of a 
typical NBA game: Washington vs San Antonio.  As shown, 
four options are provided to choose from, enabling the swarm to 
identify which team will win, as well as express a level of 
confidence in that outcome. Participants are not voting, but 
behaving – continuously expressing their views in real-time. The 
Swarm AI system processes the participants’ behaviors and 
controls the motion of the full system. The confidence indicator 
is helpful as it causes the swarm to split into multiple different 
factions and then converge over time on a single solution that 
maximizes their collective confidence and conviction.  It’s 
important to note that Figure 4 shows a snapshot of the swarm 
as it moves over time towards a final answer.  The full process 
of converging upon a solution generally required between 10 
and 30 seconds of real-time interaction within the swarm.   

Fig. 4. Human Swarm in the process of forecasting NHL game 

 

 To estimate the relative expected accuracy for each forecast 
generated by the ASI system, a dense neural network (the 
Swarm Conviction Estimator) was trained using the behavioral 
deliberation data captured during each swarm and used that data 
to predict the probability that the swarm’s forecast was correct. 
This behavioral deliberation data includes (i) the percentage of 
users pulling for each target sampled at various times throughout 
the swarm, (ii) the total number of users in the swarm, and (iii) 
the time the swarm took to converge on a forecast, among other 
behavioral indicators.  



 The network is trained using the time-varying behavioral 
deliberation data from a historical database of 1,065 swarm 
predictions of NFL, MLB, and NHL games. The range of 
reasonable probabilities for each sport differs greatly (e.g. the 
distribution of Vegas Odds for MLB is much narrower than the 
same distribution for NFL), so the network’s outputted 
probabilistic forecast cannot be considered a calibrated 
probability for a given sport, but rather a relative measure of the 
swarm’s conviction in the chosen outcome. Each relative 
conviction, referred to as a Conviction Index (CI), can therefore 
be used in a single sport, such as NBA, to rank forecasts from 
lowest to highest expected accuracy.   

 To validate the accuracy and precision of the Swarm 
Conviction Estimator in a real-world environment, the 
conviction scores were compared to Vegas Odds, and a program 
was developed to place simulated bets on the outcomes of 
matches. To do so, an ROI Estimator was developed to use the 
CI and the Vegas Odds of the swarm’s chosen outcome to 
predict the expected ROI of betting on the swarm’s chosen 
outcome. The Vegas Odds were sourced from Sportsbook, a 
widely-used online bookie. This ROI Estimator is a random 
forest that was trained on a database of 218 swarm NHL 
forecasts, each of which had an associated CI and Vegas Odds. 
When the expected ROI from this model is positive (>0%), the 
betting on the chosen outcome is expected to be profitable.  

 The experiment started with a mock wager pool of $100, and 
a betting rule directing that a total of 15% of the gambling pool 
would be bet on each week, regardless of the games selected to 
bet on that week.  The expected ROI for betting on each of the 
swarm’s forecasted outcomes was calculated using the Swarm 
Conviction Estimator and the ROI Estimator, as shown in Figure 
5. Games were selected from the pool of NBA games each week 
using one of two strategies: (a) betting on the swarm’s pick in 
all games, and (b) betting on the swarm’s pick in all games with 
a positive expected ROI. Simulated bets were placed each week, 
and the simulated return on the investment was calculated given 
the outcome of the bet (win / loss) and the Vegas Odds, added 
to the gambling pool for the next week.   

 

Fig. 5. System Diagram of ROI Estimation from Human Swarm 

Behavior and Vegas Odds 

 

V. RESULTS 

The results of the experiment are discussed in three parts. 
First, the accuracy and betting performance of the human 
swarms over all games is discussed and compared to the Vegas 
Odds. Next, the accuracy and betting performance of the CI-
selection method is discussed and compared to the Vegas Odds. 
Finally, the accuracy and betting performance of each of the 
game selection methods is compared.  

To assess whether human swarms were able to more 
accurately forecast all NBA outcomes than Vegas, the swarm’s 
raw forecasts for all games each week were compared against 
the Vegas Odds for the corresponding game for each of the 25 
weeks of the testing period. Vegas’ expected win rate for these 
selected games was calculated as the average Vegas Odds over 
all games that the swarm selected as Pick of the Week.  

Figure 6 shows the distribution of Vegas Odds for the 
selected games, and Vegas’ expected win rate: 66.5%. The 
swarm, on the other hand, had a win rate of 71.8% across these 
same games. This is a valuable improvement, equivalent to 
outperforming Vegas’ expectations by more than 5%.  

To examine the significance of this result, the average 
accuracy of each system over the full season was bootstrapped 
10,000 times. The average accuracies for each trial are shown in 
figure 7. We find that the probability that the swarm had a higher 
win rate than Vegas Odds due to chance was low (p=.0306), so 
we can be confident that these swarms were able to predict the 
outcome of games with higher accuracy than Vegas Odds.  

Fig 6. Vegas vs Swarm accuracy across all games predicted  

 

Fig 7. Bootstrapped average accuracy for Vegas vs Swarm 

 



In addition, a betting simulation was run for each prediction 
set in which 15% of the current bankroll was distributed evenly 
among bets on each of the swarm’s predictions that week. The 
performance of this model when betting against Vegas (and 
including the Bookie’s cut) is seen in figure 8. Starting with 
$100 and investing each week according to this strategy, the net 
balance after 25 weeks would be $117.71, or an ROI of 17.7%.  

A bootstrapped simulation was performed to estimate a 90% 
confidence interval around this result, where 10,000 simulated 
seasons were generated by randomly selecting with replacement 
among the games that were seen each week.  We find that the 
90% confidence interval over the ROI of this betting strategy is 
[-7.21%, 40.30%], indicating that we are not confident that 
betting on all swarm picks would return a positive ROI.  

Fig 8. Cumulative simulated betting performance of fixed bets on 

all games predicted 

 
So, while the swarm was significantly more accurate at 

predicting the outcomes of games than Vegas Odds, we cannot 
be confident that betting on the swarm outcomes would return a 
positive ROI. Two reasons could have contributed to this 
difference: (a) Vegas Odds includes a 2-5% “Bookie’s Cut” in 
all outcomes to allow the sportsbooks to make money which 
applies to the ROI simulation, but is averaged out for the 
Accuracy analysis, or (b) the compounding nature of the 
simulation’s bankroll increases the variability of the success of 
this betting strategy relative to Vegas Odds.  

To assess whether the behavioral patterns in these swarms 
could be used to precisely forecast the outcome of games, we 
next compared the performance of the CI-selection method to 
the performance of Vegas Odds over the selected games. To do 
so, the Expected ROI of each of the 213 games was calculated 
using the Swarm Conviction Estimator and ROI Estimation 
machine learning programs. 134 games out of the 213 total 
games were expected to produce a net positive expected ROI 
and were selected to be bet on. This selection of games, referred 
to as the CI-selected games, was then compared against Vegas’ 
expected win rate over the same games.  

Figure 9 shows the distribution of Vegas Odds for the CI-
selected games, and Vegas’ expected win rate: 68.7%. The 
swarm, on the other hand, had a win rate of 79.1% across these 

same games. This is a significant improvement, equivalent to 
selecting games to bet on with a 10% higher accuracy than 
would be expected given the Vegas Odds. To examine the 
significance of this result, the average accuracy of each system 
over the full season was bootstrapped 10,000 times.  

Fig 9. Vegas vs Swarm accuracy for CI-selected games 

 

The average accuracies for each trial are shown in figure 10. 
We find that the probability that the swarm outperformed Vegas’ 
expectations by chance was low (p=.0017), indicating that we 
can be confident that the CI-selected swarm forecasts had a 
higher accuracy than Vegas Odds expected.  

Fig 10. Bootstrapped average accuracy of Vegas odds and swarm 

picks over CI-selected games 

 

In addition, a betting simulation was run in which 15% of 
the current bankroll was distributed evenly and bet on each of 
the CI-selected games that week. The performance of this model 
when betting against Vegas (including the impact of the 
Bookie’s cut) is seen in figure 11. Starting with $100 and 
investing each week according to this strategy, the net balance 
after 25 weeks was $148, or an ROI of 48%. A bootstrapped 
simulation was performed to estimate a 90% confidence interval 
around this result, where 10,000 simulated seasons were 
generated by randomly selecting with replacement among the 



games that were seen each week, the ROI for each game that 
week was predicted using the ROI Estimator program, and then 
the games with positive ROI predictions were selected to bet on.  
We find that the 90% confidence interval over the ROI of this 
betting strategy is [7.69%, 96.89%], indicating that the 
probability that this selection of games produced a positive ROI 
by chance is less than 5%.  

Fig 11. Bootstrapped average accuracy of Vegas odds and swarm 

picks over CI-selected games 

 

So, we can be confident that by identifying behavioral 
characteristics within a swarm that indicate the likelihood of the 
swarm’s pick and estimating the ROI of betting on the game 
against Vegas Odds, we selected outcomes that are both more 
accurate than Vegas Odds expected and that produced a positive 
ROI when bet on. This is a notable improvement over the 
original all-game method, equivalent to a 171% increase in ROI 
over the course of the 25 weeks, but can we be confident that the 
CI-selection method outperforms the original method?  

To investigate whether this amplification of betting success 
is significant, the accuracy of the selection methods over 10,000 
bootstrapped seasons is compared in figure 12. We find that the 
CI-selected games are significantly more accurate (p < 0.001) 
than the full set of swarm picks. 

Fig 12. Bootstrapped average accuracy of all swarm picks vs CI-selected picks 

Further, it is possible to statistically compare the ROI of the 
betting methods through a similar bootstrapping simulation over 
the course of 10,000 bootstrapped 25-week seasons. Below in 
Figure 13 we compare the season-end ROI of the two selection 
methods and find that the probability that the CI-selected picks 
returned a lower ROI than the all swarm picks method due to 
chance was low (p=0.15), but not significant.  

Fig 13. Bootstrapped ROI over whole NBA season of CI-selected games vs all 
swarm picks.  

 

VI.  CONCLUSIONS 

 Can the unique deliberation behavior captured during real-
time swarm forecasts be analyzed to assess the likelihood of 
forecast accuracy?  And can that assessment be used to identify 
the strongest forecasts among a set of forecasts (e.g. the best bets 
against the Vegas odds)? The results of this study suggest this is 
the case. As demonstrated across 25 consecutive weeks of the 
2017-2018 NBA season, a machine learning program analyzing 
the behavioral characteristics of swarms of approximately 35 
typical sports fans was able to both select outcomes of the games 
more accurately and outperform the betting success of the 
swarm itself.  In fact, although both systems were able to beat 
Vegas – a world-class oddsmaker – at predicting the outcome of 
select games each week, the machine learning program 
increased the ROI of the swarm’s betting strategy by over 90%.  

 This study was limited by the availability of training and 
testing data: only one sport, and one season of that sport, was 
rigorously studied. Additionally, the games covered in this study 
were not forecasted probabilistically, due to the lack of suitable 
data to calibrate the Conviction Indexes to NBA. Future work 
will investigate the success of behavioral swarm analysis in 
different settings, will strive to improve to optimize the CI for 
general and calibrated settings, and will refine the method in 
which bets are placed to allow for more sophisticated betting 
mechanisms (i.e. using the Kelly Criteria), as there appears to be 
significant room for improvement when optimizing a wagering 
strategy against Vegas Odds based on swarm-based predictive 
intelligence.  
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