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I. INTRODUCTION  

The technology of Artificial Swarm Intelligence (ASI) has 
been shown to substantially amplify the collective insights and 
significantly increase predictive accuracy of human groups.  It 
works by connecting teams of networked users into real-time 
systems moderated by AI algorithms.  Sometimes referred to as 
“human swarms” or “hive minds,” these systems function very 
differently than traditional methods for harnessing the wisdom 
of human groups. Unlike votes, polls, surveys, or prediction 
markets, which treat each participant as a passive source of data 
for statistical aggregation, “swarming” treats each person as an 
active member of a real-time control system, enabling the full 
population to think together in synchrony and converge on 
optimized solutions as a unified amplified intelligence [1-8].  

Inspired by nature, the algorithms used by ASI systems are 
modeled on the biological principles of Swarm Intelligence, the 
phenomenon that enables flocks of birds, schools of fish, and 
colonies of bees to maximize their collective intellect [9].  In this 
way, ASI systems enable networked human teams to quickly 
solve problems and reach decisions by converging on solutions 
that optimize their combined knowledge, wisdom, insights, and 
opinions. And because “human swarms” are interactive systems 
in which the participants act and react, continually adjusting 
their conviction as the group converges on solutions, much 
smaller populations are required to achieve statistically 
significant results than polls, surveys, or markets.  

  

 

             Fig 1. Biological Swarms as Intelligent Systems 

 

Over the last five years, major progress has been made in the 

field of Artificial Swarm Intelligence, resulting in many studies 

that strongly validate the ability of ASI systems to amplify the 

intelligence of networked human groups.  In 2015, the first 

study was published demonstrating that networked teams can 

produce collaborative forecasts by working together as swarm-

based systems, achieving substantially higher accuracy than 

traditional crowd-based methods [2]. Over the years since, 

dozens of additional studies have been conducted, including:    

In 2018, Stanford University published a study showing that 

small groups of radiologists, when connected by real-time 

swarming algorithms, diagnosed chest X-rays with 33% fewer 

errors than standard method [3,4]. Researchers at Boeing 

published a study showing that small teams of military pilots, 

when working in “human swarms,” could generate qualitative 

insights about the design of cockpits with higher effectiveness 

than current methods [5]. Researchers at California Polytechnic 

published a study showing that networked business teams could 

increase their subjective decision-making accuracy by over 

25% by swarming [6].  Researchers at Oxford University and 

Unanimous AI showed that small groups of financial traders, 

when forecasting market key indicators (Oil, Gold, and S&P), 

amplified their accuracy by over 25% by forming swarms [7].  

And in 2019, researchers at Unanimous AI published a study 

showing that the behaviors of swarms could be post-processed 

by a dense neural network to amplify the predictive precision. 

In this study, groups of average sports fans were tasked with 

predicting the outcome of 238 basketball games in the NBA. 

The group significantly outperformed the Vegas odds-market, 

delivering a 24% ROI across the full set of games forecast. The 

post-processed forecasts more than doubled this ROI, achieving 

a 56% ROI over the full set of games [8].  

II. DATA-POINTS TO DATA-PROCESSORS 

Research shows that human groups can significantly amplify 
their intelligence through swarming, outperforming individual 
experts and traditional crowd-based methods. But why?  It’s 
largely because the participants within real-time swarms serve a 
very different function than the “respondents” within votes, 
polls, surveys, and prediction markets. In traditional crowd-
based instruments, respondents are simply that – a source of 
discrete responses that are captured as isolated data points and 
combined statistically with data from other respondents. While 
such methods are often said to tap into the wisdom of crowds, 
the “crowd” is a statistical metaphor for data aggregation. Even 
prediction markets are not truly interactive, as each transaction 
is between just one “buyer” and one “seller,” executed in 
sequence over time. Such methods do not enable a population to 
interact together as an emergent intelligence [10-13]. 

 

 
 

         Fig 2. Crowds as a metaphor for Data Aggregation 

https://spectrum.ieee.org/the-human-os/biomedical/diagnostics/ai-human-hive-mind-diagnoses-pneumonia
https://11s1ty2quyfy2qbmao3bwxzc-wpengine.netdna-ssl.com/wp-content/uploads/2019/01/2019-HICSS-Amplifying-Social-Intelligence-Cal-Poly.pdf
https://ieeexplore.ieee.org/document/8248984
https://unanimous.ai/publications/
https://11s1ty2quyfy2qbmao3bwxzc-wpengine.netdna-ssl.com/wp-content/uploads/2019/01/Dense-Neural-Network-NBA-CICN-2019-Final-1.pdf
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When using ASI on the other hand, human participants are 

not treated as passive data-points, but as active data-processors, 
empowered to act, react and interact with the full population of 
other users. By thinking together in real-time systems, swarming 
groups interactively explore the decision-space and converge on 
solutions that maximize their combined knowledge, wisdom, 
insights, and opinions. Thus, while “a crowd” is just a statistical 
metaphor, “a swarm” is a true emergent system, powered by AI 
to amplify group intelligence. This enables any team, from small 
groups of financial traders to large engineering teams, to quickly 
and accurately answer questions, make predictions, reach 
decisions, prioritize options, and generate insights. Simply put, 
an ASI turns any team into a unified amplified intelligence. 

 

 
 Fig 3. Human Swarms as real-time Intelligent Systems 

 

III. FROM BIOLOGY TO TECHNOLOGY 

Swarm Intelligence is a biological phenomenon that spans a 
wide range of species, from schooling fish and flocking birds, to 
slime molds and bee swarms. The product of millions of years 
of evolution, biological swarming enables groups of organisms 
to collaboratively solve problems with accuracy and efficiency 
that is beyond the capability of the individual members.  In this 
way, Swarm Intelligence is nature’s method for tapping the 
insights and instincts of groups, creating a “super-organism” that 
is significantly smarter together than the individuals alone.      

The most studied swarm in nature is that of honeybees, as 
their remarkable decision-making abilities have been researched 
since the 1950s and have been shown to be surprisingly similar 
to decision-making in neurological brains [14-15]. Brains and 
swarms both employ large populations of simple excitable units 
(i.e., bees and neurons) that work in parallel to (a) integrate noisy 
information, (b) weigh competing alternatives and (c) converge 
on optimized solutions in synchrony. In both brains and swarms, 
outcomes are arrived at through a real-time competition among 
sub-populations of excitable units until a dominant solution 
emerges. When one sub-population exceeds a threshold level of 
support, the corresponding alternative is decided upon. In 
honeybees, this enables populations of simple “scout bees” to 
collect information about their environment and converge on 
optimal decisions when searching for a new home site, finding 
the ideal solution over 80% of the time [15-17]. 

The similarity between brains and swarms becomes even 
more apparent when comparing models that represent each.  For 
example, the decision-making process in primate brains is often 
represented as a mutually inhibitory “leaky integrator” that 

aggregates incoming data from competing neural populations 
and gradually attenuate support over time [18]. This model 
indicates that (a) support signals must be continually maintained 
over the decision period or lose influence and (b) decisions are 
reached when a threshold level of activation is exceeded. A 
common framework for representing primate decisions is the 
Usher-McClelland model in Figure 4 below.  

 

    Fig. 4. Usher-McClelland model of neurological decision-making 
  

 This neurological decision model can be directly compared 
to swarm-based decision models represented in Figure 5 below. 
As shown, swarm-based decisions follow a similar process to 
neurological brains, aggregating input from sub-populations of 
participants through mutual excitation and inhibition, until a 
threshold level of support is exceeded. In fact, bee swarms have 
been shown to employ the same “leaky integrator” model in the 
vibrations they generate with their bodies that neuron employ 
with activation signals. When viewed in this context, it becomes 
apparent that, while biological brains are systems of neurons 
structured such that intelligence emerges, biological swarms are 
systems of brains structured such that amplified intelligence 
emerges.  Simply put, a swarm is a “brain of brains.”   

 

 

    Fig. 5. Mutually inhibitory decision model in bee swarms 

 If birds, bees and fish can amplify their intelligence by 
forming “super-organisms,” it seems natural that human teams 
could benefit by combining insights in similar ways. This has 
been the motivation for researchers to develop ASI technology 
as a set of algorithms and interfaces that turns networked teams 
into intelligent systems modeled after natural swarms. 
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IV. ENABLING “HUMAN SWARMS” 

Unlike many other social species, humans have not evolved 
the natural ability to form closed-loop swarms that converge in 
synchrony on optimized solution. That’s because we lack the 
subtle connections that other organisms use to establish high 
speed feedback-loops among members. Schooling fish detect 
vibrations in the water around them. Flocking birds detect subtle 
motions propagating through the population. Swarming bees use 
complex body vibrations called a “waggle dance.” To enable 
swarming by networked human groups, specialized technology 
is required in lieu of these natural abilities.    

To address this need, the Swarm® platform was developed 
and deployed by Unanimous AI.  It enables networked groups 
to think together as real-time systems, connecting from 
anywhere in the world using standard web browsers. Modeled 
largely on the decision-making process of honeybee swarms, 
the Swarm platform (and underlying Swarm AI technology)  
empowers online teams to perform the biologically inspired 
steps of (a) integrating noisy information, (b) weighing 
competing alternatives, and (c) converging on optimized 
solutions as  real-time closed-loop systems.  A screen shot from 
the Swarm platform is shown below in Figure 6.  

 

  Fig. 6. A human swarm answering a question in real-time  
(view replay: swarm.ai/r/1624) 

As shown above, swarms converges on answers by working 
together to move a graphical puck, positioning it to select a 
preferred solution from among a set of alternatives. Each 
participant provides individual input by manipulating a 
graphical magnet with a mouse or touchscreen. By positioning 
their magnet with respect to the moving puck, participants 
“apply forces” on the system, expressing and imparting their 
personal intent upon the swarm as a whole. The input from each 
user is not a discrete vote, but a stream of vectors that varies 
freely over time. Because the full population of users can adjust 
their intent continuously in real-time, the swarm moves, not 
based on the input of any individual member, but based on the 
dynamics of the full system. This enables a complex physical 
negotiation among all members at once, empowering the group 
to explore the decision-space together and converge on the most 
agreeable solution in synchrony. 

It is important to note that participants do not only vary the 
direction of their intent, but also modulate the magnitude of their 
intent by adjusting the distance between their magnet and the 
puck. Because the puck is in continuous motion across the 
decision-space, users need to continually move their magnet so 
that it stays close to the puck’s outer rim. This emulates the 
“leaky integrator model” employed by biological systems, 
requiring each participant’s support signal be maintained over 
time or lose influence. In other words, participants must 
continuously engage the puck throughout the decision process, 
repeatedly evaluating and re-evaluating their intent as they 
convey their updated contribution. If they stop adjusting their 
magnet with respect to the changing position of the puck, the 
distance grows and their applied sentiment wanes.  

 Thus, like bees vibrating their bodies to express sentiment in 
a biological swarm, or neurons firing activation signals to 
express conviction levels within a biological neural-network, the 
participants in an artificial swarm must continuously update and 
express their changing preferences during the decision process, 
or lose their influence over the collective outcome.  In addition, 
biologically inspired AI algorithms monitor the behaviors of all 
swarm members in real-time, inferring their implied conviction 
based upon their relative movement over time.  This reveals a 
range of behavioral characteristics within the swarm population 
and weights their contributions accordingly.  

 The swarming algorithms that moderate the Swarm platform 
enable similar amplification effects achieved by neurological 
brains and biological swarms.  Specifically, AI algorithms track 
the behavior of networked participants in real-time, monitoring 
how users modulate their sentiment every 250 milliseconds in 
response to others. In this way, swarms don’t ask participants to 
merely “report” their views, as polls, surveys, and focus groups 
do.  Instead, swarms inspire participants to “behave” as part of 
an interactive system, tracking their changing sentiments.  This 
difference between “reporting” and “behaving” is significant to 
the power of swarm-based systems.  

V. BEHAVING VS REPORTING 

From conducting polls and surveys, to interviews and focus 

groups, it’s common practice to ask participants to self-report 

their opinions, forecasts, and sentiments.  Unfortunately, many 

studies have shown that individuals are highly unreliable when 

tasked with self-reporting their feelings [19,20].  Compounding 

this problem, participants generally express their views as 

numerical values on linear scales. Studies have shown that 

people are nonlinear-thinkers and that participants have 

different nonlinearities in the internal rating scales they employ 

[21-23]   This means the underlying data used by traditional 

sampling methods can be highly distorted, tracking numerical 

values that appear similar on the surface, but mean different 

things to different respondents.  
Swarming addresses this problem by not relying on how 

participants report, instead processing how they behave when 
engaging real-time systems that connect all members.  This 
means for every participant, a large set of time-varying 
behavioral data is collected that reflects his or her authentic 
intentions, opinions, and/or beliefs in the context of all other 
participants, enabling them to converge not just on a common 
solution, but quantify it on a common numerical scale 

https://swarm.ai/r/1624
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VI. ASSESSING  SWARMS 

When collecting isolated data points via traditional polls and 

surveys, researchers perform statistical tests to determine if there 

is a central tendency in the data and if that tendency is 

statistically significant. In a control system, the outcome is not 

determined based on statistical inference across a sample of 

independent data points but based on whether the networked 

system of human data-processors is able to (a) converge upon a 

unified solution together, or (b) diverge, such that no solution 

can be reached. When answers are reached by the swarm 

through convergence, performance metrics are captured that 

indicate the degree of conviction within the system, giving 

valuable insights into the strength of the results.   

Specifically, the speed of convergence and the degree of 
alignment among the swarm participants during a response is 
used to compute a useful performance metric known as 
Brainpower.  Brainpower is a numerical value (0.0 to 1.0) that 
reflects the sentiment strength in an answer converged upon by 
a swarm.  The higher the number, the stronger the sentiment. If 
the question is a forecast, the Brainpower is an indication of 
confidence in the forecast. A Brainpower of 0.0 is the case where 
the swarm is so conflicted that it could not reach an answer 
within the allotted time. Typically, the maximum allotted time 
for an artificial swarm to converge is 60 seconds, as beyond that 
time there is such low conviction that it’s better to reframe the 
question and ask again. In general, swarms converge within the 
allotted time with a Brainpower between 0.65 and 0.95.  

In this way, the output from an ASI system includes not only 
the final solution converged upon by the swarm, but also 
includes Brainpower, a metric that allows for relative 
comparison across a series of questions and/or across a variety 
of unique swarms, indicating the comparative conviction 
supporting the final sentiments.  Because an ASI is a form of 
intelligence and not a form of statistical aggregation, it is best to 
think of the Brainpower as a measure of how confident the 
emergent swarm intelligence is in the solution reached.  Just like 
an individual can make a decision and have mixed feelings, so 
can a swarm intelligence, as represented by the Brainpower 
score.  

For AB-comparison questions, an even more accurate metric 
of a swarm’s confidence can be calculated, called Conviction. It 
uses a dense Neural Network to process the deliberations and 
can accurately and rigorously quantify the sentiment strength 
expressed in each solution. By correlating the behavioral data of 
thousands of previous swarms with known sentiments, the 
network can quantify the Conviction of any swarm with a degree 
of statistical certainty, based not just on the answer reached, but 
on the complex behaviors that led to the answer. Read more 
about Conviction Analysis at: http://unanimous.ai/conviction.  

As one example of the value of this more rigorous approach, 
Unanimous AI was asked to assess the perceived trustworthiness 
of major news sources in the US. To address this, a Swarm AI 
system was assembled that connected 50 voting age Americans, 
controlling for political affiliation to ensure that the number of 
Democrats, Republicans, and Independents approximately 
matched the national average.  

The New York Times was chosen as the reference news 
source, and eleven other news sources were compared to the 
New York Times in terms of perceived trustworthiness. An 
example question was formatted as follows, with the Swarm AI 
system asked to compare the New York Times to CNN, shown 
in figure 7 below:  

 
Fig. 7. Swarm AI system in the process of comparing CNN to the New 

York Times (view replay: swarm.ai/r/366831) 

The output of this process is a set of comparisons between 
the New York Times and each of the other media items. Some 
sources were assessed as more trustworthy than the Times, while 
others were assessed as less trustworthy.  And for each, a 
conviction index was generated by the Behavioral Neural 
Network, with confidence interval, enabling the comparison 
boxplot shown in figure 8 below.  

  

Fig. 8. Trustworthiness of News Sources Relative to New York Times, 
as measured by Conviction Analysis.  

In this way, swarms can quickly generate assessments with 
a rigorous Conviction Index values assigned to each item.  While 
the above example involves comparing the trustworthiness of 
media items, a similar process can be followed across a wide 
range of applications, from financial forecasting to business 
prioritizations.   

Following a similar process, Conviction Analysis can enable 
the comparison of not only one swarm answering multiple 

http://unanimous.ai/conviction
https://swarm.ai/r/366831
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different questions, but also the comparison of the Conviction of 
different populations responding to the same question. This 
allows the comparison of sentiment of multiple demographic 
groups: as one example, do Republicans or Democrats perceive 
CNN as more trustworthy? 

Of course, having mixed feelings when making a decision 
often reflects a complex set of internal tradeoffs and cannot be 
fully represented in a single metric such as the Brainpower or 
Conviction values.  For example, if asked to choose among 6 
flavors of ice-cream and predict the one that will sell best among 
a target audience, individuals may have strong positive feelings 
for some options, strong negative feelings for other options, and 
relative uncertainty or ambivalence about the options between. 
To gain deeper insights into which options the swarm is 
conflicted among, we may look at the time varying data itself.  
To support this, a technique called Faction Analysis was 
developed which enables the decision process to be presented 
visually for rapid assessment of the group decision dynamics.   

VII. FACTION ANALYSIS 

If we think of a human swarm as an intelligent system that 
considers a query, explores a set of competing alternatives, and 
converges on an optimal response, Faction Analysis can be 
thought of a “brain scan” that shows how the alternatives were 
debated within the swarm.  To provide insight into the complex 
decision process of a swarming system, a variety of graphing 
techniques have been developed. Figure 9 below is a snap-shot 
of a Swarm AI system (comprised of 87 Republican voters) 
predicting the 2016 US Presidential Primary. 

 

Fig 9.  Snapshot of Swarm in Progress  
(view replay: swarm.ai/r/45367) 

  The decision process lasted 20 seconds for this Swarm AI 
system, during which it explored the decision-space and 
converged on Donald Trump as a final prediction. In this case, 
the Brainpower of the swarm was 0.72, reflecting moderate 
confidence in the forecast outcome.  This is a useful result, and 
turned out to be a very accurate prediction. Still, a researcher 
may desire more insights into how that result was reached.  To 
provide such insight, the Faction Force Graph of Figure 10 
below was generated.  The plot reflects the change in factional 

force imparted by participants in support of each candidate 
across the 20 second decision period.  

 

Fig 10. Faction Force vs Time Graph 

As shown in Figure 10 above, the Swarm AI system was torn 
between three principal outcomes – Donald Trump, Marco 
Rubio, and Ted Cruz. It’s important to observe that the most 
popular option at time t=0 was Marco Rubio, with very low 
differentiation among the top 3 options.  This reflects the initial 
response provided by participants in isolation, before real-time 
swarming proceeds.  This initial time step is generally aligned 
with a typical survey and demonstrates the flawed answer a 
survey would reveal. But a swarm is an intelligent system, 
enabling participants to converge over 20 seconds on the answer 
they best agree upon. And in this case, that answer arrived upon 
proved to be the correct prediction of Donald Trump.  

We can dig deeper into the deliberation process, looking not 
just at the factional support but also how and when the individual 
participants switched their opinions in order to converge on a 
solution the swarm could best agree upon. This is reflected in 
the Faction Change Graph shown in Figure 11.   

 

Fig 11.  Faction Change vs Time 

As reflected in this graph, we can see that while predicting 
Trump was not the most popular initial choice, or even the 
largest plurality at the onset of swarming, the participants 
converged on Trump with high conviction, and that option 
gained steady support over time, capturing supporters who were 
conflicted over Cruz and Rubio.  This is a powerful insight, 
because it reveals, for example, that Trump campaign staff could 
target Cruz and Rubio supports and expect defections, while the 
inverse would not be expected.  

https://swarm.ai/r/45367
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It’s interesting to note that CNN ran a Political Prediction 

Market to forecast the odds of each candidate becoming the 

nominee mid-stream in the primary process. They forecast a 

dead heat for the Republican nominee, with Rubio at 33% odds, 

Cruz at 30% odds, and Trump at 28% odds [24].  Looking at 

Figure 8 above, the CNN prediction is roughly what we would 

expect from a traditional polling system, corresponding to the 

initial sentiment distribution at t=0 seconds on the chart.  The 

swarm-based prediction on the other hand, as represented by 

t=20 seconds on the chart, shows that with real-time feedback, 

the system converges on a far more insightful result –Trump.  

VIII. INTERPOLATION 

Converging on precise numerical estimations is a common 
use case for business teams using Swarm, from predicting the 
odds of a business outcome to forecasting the change in value of 
a financial asset. While swarm-based forecasts have been shown 
to be significantly more accurate than other methods, 
researchers at Unanimous AI have recently developed a 
technique for post-processing swarm-based data that makes the 
output even more accurate.  Known as “Force Density 
Interpolation,” this software feature processes the full range of 
behaviors captured during a real-time swarm and interpolates to 
compute a more precise final value.  

 

 
 

Fig. 12. ASI in the process of Diagnosing Pneumonia  

(view replay: swarm.ai/r/371381) 

 

This process is best described by example.  Let’s consider a 
recent study conducted by Stanford University [3,4] in which 
small groups of radiologists were tasked with diagnosing chest-
X-rays for the presence of pneumonia. In this study, the swarms 
significantly outperformed the individual doctors, reducing 
errors by over 30%.  Figure 12 below shows a screenshot of a 
swarm in the process of selecting the coarse range of 
probabilities for a chest X-ray that was displayed to all members.  
It’s important to note that this is a snapshot as the collaboratively 
controlled puck moves across the decision-space and converges 
upon an answer. The full process of deliberation, as moderated 
by the real-time swarm intelligence algorithms, generally takes 
between 15 and 60 seconds.  In the example shown above, the 

swarm converged on an answer (5-25%) within 16 seconds.  
Note, the two groups used different layouts of probability bins.  

While the final probability selected by the swarm is a good 
first estimate for the chosen probability of pneumonia, we can 
use the underlying data generated by the swarm as they 
converged upon their answer to refine this value. This is done 
using a weighted averaging process referred to as Squared 
Impulse Interpolation. This process, as outlined in Equations 1 
and 2, calculates a weighted average of the probabilities in the 
swarm using the squared net “pull” towards each answer as 
weights. The pull is represented as the force (F) imparted by 
members of the swarm and the weight for each answer wi is 
calculated as the squared impulse towards that answer (equation 
1). The weighted average over the answer choice values vi is 
then computed (equation 2). The answer choice values vi are 
taken as the midpoint of each bin. For example, the bin “0%-
5%” has a midpoint vi of 2.5%.   

 

𝑤𝑖 =  
𝐹(𝑖)2

∑ 𝐹(𝑎)2
𝑎∈𝐴𝑛𝑠𝑤𝑒𝑟𝑠

    (1) 

𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑ 𝑤𝑖𝑣𝑖    (2) 

  

 This process can be visualized in Swarm by plotting the net 
vector force of each radiologist over the course of the swarm, as 
shown in Figure 13. In this Force Density Visualization, the 
puck’s trajectory is shown as a white dotted line, and the 
distribution of Force is plotted as a Gaussian Kernel Density 
heatmap. Notice that the swarm was split between the “5%-
25%” and “0%-5%” bins, and more force was directed towards 
the 5%-25%. This aggregate behavior is reflected in the swarm’s 
Interpolated Diagnosis of 11.1%. 

 

 

Fig. 13. Force Density Interpolation 

https://swarm.ai/r/371381
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IX. SCALED RANKINGS 

Ranking a set of outcomes or prioritizing a set of alternatives 
is a common use case of Swarm AI systems. Swarm-based 
rankings have been shown to be significantly more 
representative of group priorities than voting [30].  While 
ordinal rankings (1st, 2nd, 3rd…) are useful, it’s often also 
valuable to quantify the difference in ranking between two 
alternatives to understand the relative difference in sentiment 
between those alternatives.  

To accomplish this, the behavioral data from swarms can be 
used to create Scaled Rankings that represent the relative 
sentiment of each answer choice in a prioritization or across a 
set of comparison questions. Scaled rankings are cardinal 
rankings that take values between 1 and n, where n is the number 
of possible outcomes (1, 1.8, 3.2 …. n).  

To illustrate this more clearly, we can consider a case where 
Unanimous was challenged to rank the most likely winners of 
the FIFA World Cup. To do so, a team of football enthusiasts 
from around the world was assembled into a Swarm AI and 
generated an ordinal ranking from least likely (1) to most likely 
(16) to win the championship.  

The behavior of the swarm in the ranking process was then 
used to generate Scaled Rankings, from 1 (least likely) to 16 
(most likely), as shown below in Figure 14. The Scaled Ranking 
of the teams are shown on the x-axis, while the given Ordinal 
Ranking of the teams are shown on the y-axis. The data is 
significantly more meaningful when represented with Scaled 
Rankings, as the differences between each team’s performance 
level is clearer. In fact, only in the Scaled Ranking 
representation do five distinct clusters emerge in team 
performance (highlighted in red): Moonshot winners are 
significantly lower ranked than the Likely Upsets, and so on, 
onto the two most likely winners.  

 In this example, Brainpower was used to generate the scaled 
rankings, but Conviction may be used instead on appropriate AB 
questions, similar to the News Trustworthiness Analysis in 
figure 8 above.  

 
Fig. 14. Scaled Ranking Scatterplot for 2018 FIFA Predictions, with 

clusters highlighted in red. 

 

X. SWARM SIZE 

What is the right size of a swarm?  In many ways, that is 
similar to asking how many neurons it takes to build an effective 
brain.  Clearly it depends upon the task at hand and the features 
of the neurons themselves. And even with those caveats, science 
does not yet have an answer.  For swarms, it’s not any more 
definitive. After all, a biological swarm is essentially a “brain of 
brains” – a networks of high-level processors that work together 
as a unified system. As mentioned above, among the most 
studied example in nature are honeybee swarms, which have 
been researched since the 1950’s.  When working together as a 
system, optimized answers to complex problems emerge when 
bee swarms form among groups of 200 to 400 members. Thus, 
although bee colonies are 10,000 members in size, millions of 
years of evolution have produced swarming behaviors among 
just 2 to 4% of the overall colony population. This natural 
example gives a potential starting point for sizing human 
swarms.  

Still, it would be helpful to have additional guidance as to 
the effective size of swarms and ground our thinking with 
respect to traditional polls and surveys.  To address this issue, 
researchers at Unanimous A.I. and Oxford University [25] 
performed comparative studies of polls vs swarms, testing the 
accuracy of group decisions and predictions.  For example, in 
one recent study, researchers compared a poll of 469 football 
fans with a swarm of 29 football fans in a challenge to predict 
20 Prop Bets during the 2016 Super Bowl.  Results revealed that 
the poll results, although based on 16 times the number of 
participants, was significantly less accurate (at 47% correct) 
than the swarm (at 68% correct).  This represents a significant 
amplification of intelligence resulting from swarming.  

Figure 15 below shows the swarm’s performance in this 
particular study as compared to the statistical distribution of poll 
participants.  The swarm’s performance is represented by the red 
line on the graph.  The x-axis represents how many questions the 
individuals answered correctly.  The y-axis represents how 
many people correctly answered that particular number of 
questions from the 469-person sample.  

 

Fig 15. Swarm Performance vs Group Members 

 As indicated by the red line, the 29-person swarm 
outperformed the individuals in the much larger poll by 2 
standard deviations (Z=1.99).  In fact, the swarming process 
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generated forecasts that outperformed 96.2% of the individual 
members, which suggests that swarming significantly amplified 
the intelligence of the individuals.   

 Similar results have been shown in swarms as small as 4 
people [6], to swarms as large as 30 people [29], so swarms can 
amplify the accuracy of both small and large groups. These and 
other results support the view that swarming, with closed-loop 
feedback, is a far more efficient method for harnessing group 
insights than polling, even when polls target significantly larger 
populations.  

XI. SWARM REPEATABILITY 

   

When conducting swarms, the question of ‘sample size’ 

comes up, meaning how many participants are needed in a 

swarm to get statistically significant results. The people who 

ask this question are generally familiar with conducting polls 

and surveys, where sample size determines the extensibility of 

the results to the population at large.   

When comparing surveys and swarms, however, the idea of 

repeatability is often misleading: when a system is repeatable or 

“statistically significant” for a sample size, that does not mean 

that the answer produced is accurate, but rather that asking the 

question again would give the same results. In other words, 

reaching the wrong answer consistently is not the hallmark of an 

accurate system.  

 One example of the distinction between repeatability and 
accuracy can be seen in a recent study conducted by researchers 
at California Polytechnic and Unanimous AI, in which 283 
individuals took a social sensitivity test first alone, and then as a 
swarm of 3-6 people (4 on average), for a total of 66 swarms 
[31]. 

 The repeatability and accuracy of the Surveys and Swarms 
on one question of this test are compared in figure 16. The 
repeatability of each survey method on this question was 
calculated as the frequency that a random resample of responses 
would reach the most popular answer. The repeatability of the 
swarm was calculated as the frequency with which swarms 
chose the most popular answer.  In addition, the accuracy and 
repeatability of an Aggregation of Swarms was evaluated as the 
result of a ‘vote’ between three swarms’ final answers.  

 The large survey of 283 users was far more repeatable 
(98.6%) than the small swarms (62%). However, because most 
individuals answered incorrectly, a survey of 283 was correct 
only 1.4% of the time. Meanwhile, the swarms, comprised of the 
same individuals that voted mostly for the wrong answer, 
achieved a 62% accuracy on this question. 

 Clearly the repeatability of a system is primarily a function 
of the sample size of that system, which does not necessarily 
indicate accuracy. By connecting individuals in real-time 
Swarms, groups converge more frequently on the correct 
answer, even if the correct answer is chosen by the minority of 
constituents when surveyed. 

 
Fig 16. Repeatability and Accuracy comparison of Swarms vs 

Surveys on Question 23 of the Mind in the Eyes test.  

 
Other than this singular question, we find that over the whole 

social sensitivity test, the swarm was slightly more repeatable 

than similarly-sized surveys, while also being significantly more 

accurate. As shown in Figures 17 and 18, an aggregation of 5 

swarms of 4 users each yields similarly repeatable results to a 

survey of the same size (20 people), while at the same time 

providing more accurate results than a 283-person survey, more 

than 10 times the sample size of the swarming population.  

Fig 17. Repeatability of Mind in the Eyes Swarms vs Surveys 

Fig 18. Accuracy of Mind in the Eyes Swarms vs Surveys 
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We can also study repeatability of human swarms in a 

different way, by testing whether human swarms can 

consistently outperform individuals. To investigate this, a study 

was recently conducted by researchers at Unanimous A.I. and 

Oxford University, testing the ability of a swarm to predict 

English Premier League (EPL) football matches over a period 

of 5 consecutive weeks.   

 

 

Table 1. Summary of prediction results over 5 weeks. 

For each of the 5 weeks of the study, predictions were made 
for the full slate of 10 matches played. This means the swarm 
and individuals predicted, in total, the outcome of 50 
professional soccer matches.  These results are shown in Table 
1 below, revealing that the swarm outperformed the individuals, 
week after week, with an average amplification of intelligence, 
across the full five weeks, equal to 131%. 

To assess statistical significance, swarm performance was 
compared to the performance expected by chance from a 
matching population using a bootstrap approach as follows: each 
week, researchers took a random sample of 10 individuals who 
participated in that week’s trial and took the first individual's 
prediction for the first match, the second individual's prediction 
for the second match and so on until ten predictions from the ten 
randomly selected individuals were generated. Researchers then 
averaged the accuracy of these predictions Repeating the 
procedure (i.e., random selection of ten individuals and response 
assignment) 10,000 times, researchers then computed the 
average distribution of correct answers for that week.  

 Distributions are shown in Figure 19 below. The mean of the 
distribution represents the average number of correct picks that 
should be expected by chance, by matching forecasters 
population. As shown, the swarms are well above the mean as 
compared to individual predictions. Researchers then computed 
the distance of the swarm performance for each week from that 
week's mean in the form of a z-score distance and computed the 
value of the cumulative density function of a normal distribution 
with that mean and standard deviation. The value indicates the 
probability of obtaining the score by chance. 

 

Fig. 19. Individual vs Swarm predictions, assessed weekly. 
 

To aggregate the results from the five weeks into one, 
researchers compared the overall number of hits (i.e. successful 
predictions) made by the swarm in the 5 weeks and the number 
of hits made by the average individual (rounded to the closest 
integer). We then used a two-proportion z-test, with the null 
hypothesis that the two hit rates are the same. A z-statistic was 
obtained using the following formula: 

z=(pIND – pSWARM) /  sqrt(p*(1-p)*(2/50)) 

where pIND is the hit rate of the average individual, pSWARM 
is the hit rate of the swarm and p is the total sum of hits made by 
both the average individual and the swarm and divided by the 
total number of predictions (i.e., 100). The results show that the 
average individual was significantly worse than the unified 
swarm intelligence (z=-1.78, p=.03). The aggregated results can 
be shown in a single profile, as depicted in Figure 20. The red 
line indicates the superior performance of the swarm as 
compared to individuals.   

 

Fig. 20. Individual vs Swarm predictions aggregated over 5 weeks 
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XII. POSITIONAL BIAS 

 When using human swarms to select among a set of spatially 
arranged options, a question sometimes arises about whether the 
spatial placement of the options influences the outcome.  The 
answer is no - not at a significant level in the vast majority of 
situations.  The reason is twofold:  

 First, a swarm is not a vote or poll, but an interactive system 
that explores the set of options and converges on the most 
agreeable solution. The path taken by the swarm will vary based 
on spatial layout of the options, but the result converged upon 
should be independent of layout in most cases. This is true of 
both of human and natural swarms.  In fact, this effect has been 
studied in honeybees and is believed to be one of the primary 
evolutionary benefits of swarming.  For example, when 
selecting a new home site, bees explore a 30-square mile area 
and consider dozens of potential options, some of which are 
discovered long before others.  Biologists have shown that the 
swarming process enables bees to convergence on the optimal 
solution, independent of the order of discovery [16].  The 
evolutionary need is obvious: if honeybees converged on home 
sites that were not optimal simply because they were considered 
first, their chances for survival would be greatly diminished. 
Fortunately, a swarm intelligence is an adaptive system that is 
robust in combating ordering effects.  

 It’s worth noting that we humans have a lot to gain by using 
synchronous swarms, as many common methods for 
asynchronous polling are not only deeply susceptible to biasing 
based on the order in which options are evaluated, their results 
become meaningless because of it.  For example, online forums 
such as Reddit allow popular content to rise and fall with 
sequential up-voting and down-voting. Similarly, online 
prediction markets allow commoditized content to rise and fall 
with sequential buys and sells. Research studies show that 
sequential polling can greatly distort outcomes by introducing 
social biasing effects (often referred to as herding or 
snowballing). One well-known study [12] found that a single up-
vote, when inserted first into an online sequential polling system 
like Reddit, influenced the final decision of the group by more 
than 25%. Similarly, prediction markets suffer from momentum 
effects, price bubbles, risk-aversion biases, and over-corrections 
as a consequence of asynchrony [27].   

 Second, the underlying routines that govern human swarms 
include unique algorithms designed specifically to minimize the 
cases where positional layout could impact outcome.  
Specifically, every 250 milliseconds, the algorithms assess 
whether or not the spatially arranged options are on the same 
side of the puck as each other, and thus could influence each 
other constructively, or if they are opposite sides of the puck, 
and therefore can influence each other destructively. In this way, 
neighboring factions do not aggregate support as a result of their 
close proximity, and distant factions do not diminish support as 
a result of their opposing locations.  Such mathematics ensure 
that the puck can explore the decision-space without significant 
positional biases and enable the natural swarming process to 
proceed spatially independent.   

 

XIII. ANSWER OPTIONS 

As currently implemented by the Swarm AI platform, 

questions can be provided either as a continuous range across a 

number line or as a hexagon of up to six discrete selections (as 

in Fig 9).  Researchers new to swarming often ask about the use 

of the hexagon and its limitation of only supporting up to six 

simultaneous options. This is a deliberate limitation based on 

historic social-science research indicating that most human 

participants are inefficient decision-makers when presented 

with more than six simultaneous options. Such “choice 

overload” causes people to become overwhelmed by larger 

option sets and make poor decisions, and even lose interest in 

the decision process itself [28]. To enable swarms to consider 

larger sets of alternatives, the Swarm AI system employs an 

iterative approach, presenting users with a series of six-option 

subsets of the full answer pool, then pitting the winner of each 

subset against each other. This allows a final answer to emerge 

from a large set of options.  Using this iterative process, 

methodologies can be designed for any number of choices, 

presenting the alternatives in a manner that avoids “choice 

overload.”  
 

XIV. FINAL GUIDIANCE 

 Artificial Swarm Intelligence is a unique and powerful 
method for tapping the knowledge, wisdom, intuition, and 
insights of human populations, enabling optimized solutions to 
rapidly emerge.  While many are tempted to compare the process 
to traditional polls, surveys, and focus groups, the relationship is 
tenuous at best.  Yes, all of these methods collect input from 
human participants, but polls, surveys, and focus groups treat 
people as “respondents” – i.e. as a source of isolated data points 
that are added to a growing dataset.  Because such methods are 
statistical constructs, their validity is based entirely on simple 
statistical tests.  And even then, a statistically significant poll 
does not mean that the poll is providing researchers with 
accurate insights – it just means that repeating the poll on a 
similar population will yield the same answers, accurate or not.  

 Artificial Swarm Intelligence systems, on the other hand, 
treat people as “participants” and task them with being active 
“data processors” rather than passive data points.  This enables 
populations to form real-time systems that converge on optimal 
solutions.  While polls, surveys, and focus groups can indicate 
which option among a set of options might be most popular to 
individuals, in isolation, they give little insight into which 
options the population would best agree upon “in the wild.”  
Because most marketing activities are about influencing 
populations in real-world contexts, not polling individuals in 
isolation, using Artificial Swarm Intelligence to reveal how 
groups are most likely to converge as natural systems is a far 
more effective technique.   
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