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Abstract— Artificial Swarm Intelligence (ASI) is a hybrid AI 

technology that enables distributed human groups to “think 

together” in real-time systems modeled on natural swarms.  

Prior research has shown that by forming “human swarms,” 

networked groups can substantially amplify their combined 

intelligence and produce significantly more accurate forecasts 

than traditional methods. The present study explores whether 

the rich behavioral data collected during “swarming” can be 

used to further increase the accuracy of swarm-based forecasts. 

To do this, a dense neural network was used to process the data 

collected during a set of swarm-based forecasts and generate a 

Conviction Index (CI) for each forecast that estimates its 

expected accuracy.  This method was then tested in an authentic 

forecasting task – wagering on sporting events against the Vegas 

odds.  Specifically, groups of sports fans, working as real-time 

swarms, were tasked with predicting the outcome of 238 NBA 

games over 25 consecutive weeks. As a baseline, the swarms 

achieved an impressive 25% net return on investment (ROI) 

against the Vegas Odds.  This was compared to an enhanced 

method that used Conviction Index to (a) estimate the strength 

of each forecast and then (b) wager only on forecasts of sufficient 

strength. The CI-selected wagers yielded a 57% net ROI against 

Vegas Odds.  This is a significant gain, equivalent to more than 

doubling the ROI of the naïve swarm betting strategy.  

Keywords— Swarm Intelligence, Artificial Swarm 

Intelligence, Collective Intelligence, Human Swarming, Artificial 

Intelligence, Collaborative Intelligence, Machine Learning, 

Sports Forecasting, Wisdom of Crowds. 

I. INTRODUCTION  

The technology of Artificial Swarm Intelligence (ASI) has 
been shown to amplify the predictive accuracy of networked 
human groups across a variety of tasks [1-6]. Prior studies 
have shown that real-time “human swarms” can produce more 
accurate forecasts than traditional “Wisdom of Crowd” 
methods such as votes, polls, surveys, and markets.  

For example, a 2015 study tested the ability of human 
swarms to forecast the outcome of NCAA college football 
games against Vegas betting markets.  A swarm of 75 average 
sports fans was tasked with predicting a set of 10 college bowl 
games. As individual forecasters, the participants averaged 
50% accuracy when predicting game outcomes against the 
Vegas spread. When forecasting together as real-time human 
swarms, those same participants achieved 70% accuracy 
against the Vegas spread [2].  

Similar performance increases have been found in other 
studies, including a five-week study that tasked human 
participants with predicting a set of 50 soccer matches in the 
English Premier League.  Results showed a 31% increase in 
accuracy when participants worked in swarms [4].  Human 
swarms were also shown to outperform Vegas betting markets 
in a 20-week study that involved predicting the outcome of 
200 National Hockey League games. By using ASI 
technology, human swarms were shown to reduce the 
expected error rate by 61% on a subset of games [6].  

While prior studies have documented the ability of 
artificial human swarms to amplify the predictive ability of 
human populations and outperform individual forecasters, 
statistical aggregations from large crowds of forecasters, 
computer models, and largescale betting markets, no formal 
study has studied the estimation of expected accuracy of 
swarm forecasts with machine learning. Such a machine 
learning model would allow deeper insights into human 
swarm behavior, paving the way for the optimization of ASI 
systems and the widespread application of swarm-based 
forecasting to diverse problems, such as financial, 
geopolitical, or sports forecasting.  

To address this, the current study develops a machine 
learning model that processes the behavioral data from human 
swarms, generates a Conviction Index (CI) that reflects the 
expected accuracy of the swarm, and predicts the expected 
ROI of placing a bet on the game against a largescale betting 
market (i.e. the published Vegas odds). The study then pits the 
machine learning model against Vegas, computing financial 
returns for theoretical bets placed against the real-world odds 
and payouts in a full season of the National Basketball 
Association (NBA). The model’s betting success against 
Vegas is compared to a naïve model of betting on all games. 
The present study considered 25 consecutive weeks of NBA 
games, requiring human swarms to forecast between six and 
eleven games per week, for a total of 238 games predicted.   

The study is organized as follows: in Section II, we 
introduce the concept of “human swarming" and discuss 
biological basis for optimized swarm-based decision-making. 
In Section III, a cloud-based technology platform for real-time 
human swarming (swarm.ai) is introduced, and examples of 
swarms are provided. In Section IV the experimental 
methodology behind this forecasting study is described.  
Finally, the results of the study are analyzed in Section V.  



II. SWARMS AS INTELLIGENT SYSTEMS 

Given a population in which each individual has a unique 
set of information about the world, how do we best combine 
their perspectives and reach an optimal solution?  Researchers 
have been trying to solve this problem for centuries using 
techniques that are now commonly referred to as harnessing 
the “Wisdom of Crowds” or simply crowdsourcing [7,8,9]. 
These methods generally involve taking votes, conducting 
polls, collecting surveys, or running information markets. 
Most crowd-based methods capture input from each human 
participant in isolation (or near isolation) from other members 
and then combine the data from the full set of members 
through statistical aggregation, either over time or post-hoc.  
In other words, these “crowds” are not actually groups of 
people interacting freely as real-time collaborative systems, 
but instead are statistical constructs for mathematical analysis.  

 Mother Nature has been working on methods to harness 
the diverse perspectives of populations, having explored this 
issue across many millions of years of biological evolution.  
The successful solutions that evolved in nature do not involve 
taking votes, conducting polls, collecting surveys or running 
prediction markets – they involve forming dynamic systems 
in which the full population is enabled interact in real-time and 
converge together on optimal solutions. Biologists refer to this 
phenomenon as Swarm Intelligence. It’s one of the primary 
reasons why birds flock, fish school, and bees swarm – they’re 
able to combine their insights in optimal ways, becoming 
significantly smarter together than alone.  

 The most researched form of Swarm Intelligence in nature 
is the honeybee swarm. Studied since the 1950s, the decision-
making abilities of honeybee swarms have been shown to be 
very similar to the decision-making processes in neurological 
brains [10,11]. Both employ large populations of simple 
excitable units (i.e., bees and neurons) that work in unison to 
integrate noisy information about the world, weigh competing 
alternatives, and converge on unified decisions in real-time 
synchrony. In both brains and swarms, outcomes are arrived 
at through a competition among sub-populations of excitable 
units. When one sub-population exceeds threshold support, 
the corresponding alternative is chosen. In honeybees, this 
enables the large colonies to converge on optimal decisions to 
highly complex problems such as selecting an optimal home 
location from among a large set of alternatives [12,13,14].  

III. ENABLING “HUMAN SWARMS” 

Unlike birds, bees and fish, we humans have not evolved 
the natural ability amplify our combined intelligence by 
forming real-time swarms. That’s because we lack the subtle 
connections that other organisms use to form feedback loops 
among members. Schooling fish detect vibrations in the water 
around them. Flying birds detect motions propagating through 
the flock. Swarming bees use complex body vibrations called 
a “waggle dance.” To enable real-time swarming among 
groups of networked people, specialized user interfaces and 
algorithms are required to close the loop among all members.  

To address this need, a software platform called swarm.ai 
was developed to enable human groups to link online as real-
time synchronous systems, connecting from anywhere in the 

world [15-18]. Modeled on the decision-making process 
employed by honeybee swarms, the system allows groups of 
distributed users to work in parallel to (a) integrate noisy 
evidence, (b) weigh competing alternatives, and (c) converge 
on in synchrony on optimized solution, all while allowing 
participants to react to the changing system in real-time, 
thereby closing a feedback loop around the full population.   

As shown in Figure 3, the software used in this study 
enables human swarms to answer questions by collaboratively 
moving a graphical pointer depicted as a glass puck.  Answers 
are reached when the swarm moves the puck from the center 
of the screen to one of set of answer options.  Each participant 
provides input by manipulating a graphical magnet with a 
mouse or touchscreen. By positioning their magnet with 
respect to the moving puck, participants impart their personal 
intent on the swarm as a whole. The input from each user is 
not a discrete vote, but a stream of vectors that varies freely 
over time, enabling the swarm to move, not based on the input 
of any individual, but based on the dynamics of the full 
system. In this way, the group to explores the decision-space 
and converges on the most agreeable solution in synchrony. 

It is important to note that participants do not only vary the 
direction of intent, but also modulate the magnitude of intent 
by adjusting the distance between their magnet and the puck. 
Because the puck is in continuous motion across the decision-
space, users need to continually move their magnet so that it 
stays close to the puck’s outer rim. This is significant, for it 
requires participants to be engaged continuously throughout 
the decision process, evaluating and re-evaluating their intent 
as they convey their contribution. If they stop adjusting their 
magnet with respect to the changing position of the puck, the 
distance grows and their applied sentiment wanes.  

 

Fig. 3. A human swarm answering a question in real-time 

Thus, like bees vibrating their bodies to express sentiment 
in a biological swarm, or neurons firing to express conviction 
within a biological neural-network, the human participants in 
an artificial swarm must continuously update their intent 
during the ongoing decision process or lose influence.  In 
addition, intelligence algorithms monitor the behaviors of all 
swarm members in real-time, inferring their implied 
conviction based upon their relative motions over time.  



IV. SWARM CONVICTION STUDY 

To assess whether the behavioral patterns within the 
deliberation data from human swarms can be used to estimate 
the expected accuracy of forecasts, a formal study was 
conducted using groups of randomly selected human subjects 
from a pool of self-reported NBA enthusiasts. Each weekly 
group consisted of 28 to 43 participants, all of whom logged 
in remotely to the Swarm system. Each subject was paid $4.00 
for their participation in each weekly session, which required 
them to predict of the outcome of all of the basketball games 
being played that night, first as (a) individuals on a standard 
online survey, and then (b) as part of a real-time swarm 
comprised of the full population.     

 Across the 25-week period, predictions were generated by 
for between six and eleven games per week for a total of 213 
games.  For each game, participants were required to work 
together as an ASI system to forecast the winner of each game, 
and converge on their collective level of confidence in this 
forecast (“Low Confidence” or “High Confidence”). 
Participants were then asked to predict, by working together 
as a swarm, how much the team they picked would win by on 
a scale from “1” to “15+” points.  

 Figure 4 shows a snapshot of a human swarm comprised 
of 32 participants in the process of predicting the outcome of 
a typical NBA game: Washington vs San Antonio.  As shown, 
four options are provided to choose from, enabling the swarm 
to identify which team will win, as well as express a level of 
confidence in that outcome. Participants are not voting, but 
behaving – continuously expressing their views in real-time. 
The Swarm AI system processes the participants’ behaviors 
and controls the motion of the full system. The confidence 
indicator is helpful as it causes the swarm to split into multiple 
different factions and then converge over time on a single 
solution that maximizes their collective confidence and 
conviction.  It’s important to note that Figure 4 shows a 
snapshot of the swarm as it moves over time towards a final 
answer.  The full process of converging upon a solution 
generally required between 10 and 30 seconds of real-time 
interaction within the swarm.  

 

Fig. 4. Human Swarm in the process of forecasting NHL game 

 

 To estimate the relative expected accuracy for each 
forecast generated by the ASI system, a dense neural network 
(the Swarm Conviction Estimator) was trained using the 
behavioral deliberation data captured during each swarm and 
used that data to predict the probability that the swarm’s 
forecast was correct. This behavioral deliberation data 
includes (i) the percentage of users pulling for each target 
sampled at various times throughout the swarm, (ii) the total 
number of users in the swarm, and (iii) the time the swarm 
took to converge on a forecast, among other behavioral 
indicators.  

 The network is trained using the time-varying behavioral 
deliberation data from a historical database of 424 swarm 
predictions of NFL and NHL games. The range of reasonable 
probabilities for each sport differs greatly (e.g. the distribution 
of Vegas Odds for NHL is much narrower than the same 
distribution for NFL), so the network’s outputted probabilistic 
forecast cannot be considered a calibrated probability for a 
given sport, but rather a relative measure of the swarm’s 
conviction in the chosen outcome. Each relative conviction, 
referred to as a Conviction Index (CI), can therefore be used 
in a single sport, such as NBA, to rank forecasts from lowest 
to highest expected accuracy.   

 To validate the accuracy and precision of the Swarm 
Conviction Estimator in a real-world environment, the 
conviction scores were compared to Vegas Odds, and 
simulated bets were placed on the outcomes of games. To 
decide which games to bet on, an ROI Estimator was 
developed to predict the expected ROI of betting on the 
swarm’s chosen outcome based on the CI and Vegas odds of 
the match. The Vegas Odds were sourced from Sportsbook, a 
widely-used online bookie. This ROI Estimator is a random 
forest that was trained on a database of 243 swarm NHL and 
181 swarm NFL forecasts, each of which had an associated CI 
and Vegas Odds.  

 When the expected ROI from the ROI Estimator is 
positive (>0%), betting on the chosen outcome is expected to 
be profitable. Games were selected from the pool of NBA 
games each week using one of four strategies: (a) betting on 
the swarm’s pick in all games, (b) betting on the swarm’s pick 
in all games with a positive expected ROI, (c) betting on the 
swarm’s pick in all games with an expected ROI above 10%, 
and (d) betting on the swarm’s pick in all games with an 
expected ROI above 20%. These strategies were designed to 
simulate progressively more aggressive betting strategies, 
from betting on all games to betting on only a select few games 
that are expected to return a significant payout. 

 The experimental simulations started with a mock wager 
pool of $100, and a betting rule directing that a total of 15% 
of the gambling pool would be bet each week, regardless of 
the games selected to bet on that week.  The expected ROI for 
betting on each of the swarm’s forecasted outcomes was 
calculated using the Swarm Conviction Estimator and the ROI 
Estimator, as shown in Figure 5. Simulated bets were placed 
each week on each strategy’s selected games, and the 
simulated return on the investment was calculated given the 
outcome of the bet (win / loss) and the Vegas Odds. The net 



return on investment was then added to that strategy’s 
gambling pool for the next week.   

Fig. 5. System Diagram of ROI Estimation from Human Swarm 

Behavior and Vegas Odds 

 

V. RESULTS 

The results of the experiment are discussed in two parts. 
First, the accuracy and betting performance of the human 
swarms over all games is discussed and compared to the 
Vegas Odds. Next, the accuracy and betting performance of 
the CI-selection methods are discussed and compared to the 
uninformed all swarm picks method. To assess whether 
human swarms were able to more accurately forecast all NBA 
outcomes than Vegas, the swarm’s raw forecasts for all games 
each week were compared against the Vegas Odds for the 
corresponding game for each of the 25 weeks of the testing 
period. Vegas’ expected win rate for these selected games was 
calculated as the average Vegas Odds over all games that the 
swarm selected as Pick of the Week. Figure 6 shows the 
distribution of Vegas Odds for the selected games, and Vegas’ 
expected win rate: 66.5%. The swarm, on the other hand, had 
a win rate of 71.8% across these same games. This is a 
valuable improvement, equivalent to outperforming Vegas’ 
expectations by more than 5%. 

 

 

Fig 6. Vegas vs Swarm accuracy across all games predicted  

 

To examine the significance of this result, the average 
accuracy of each system over the full season was bootstrapped 
10,000 times. The average accuracies for each trial are shown 
in Figure 7. We find that the probability that the swarm had a 
higher win rate than Vegas Odds due to chance was low 
(p=.0306), so we can be confident that these swarms were able 

to predict the outcome of games with higher accuracy than 
Vegas Odds.  

 

Fig 7. Bootstrapped average accuracy for Vegas vs all Swarm picks 

 

In addition, a betting simulation was run for each 
prediction set in which 15% of the current bankroll was 
distributed evenly among bets on each of the swarm’s 
predictions that week. The performance of this model when 
betting against Vegas (and including the Bookie’s cut) is seen 
in Figure 8. Starting with $100 and investing each week 
according to this strategy, the net balance after 25 weeks 
would be $124.74, or an ROI of 24.7%.  

A bootstrapped simulation was performed to estimate a 
90% confidence interval around this result, where 10,000 
simulated seasons were generated by randomly selecting with 
replacement among the games that were seen each week. We 
find that the 90% confidence interval over the ROI of this 
betting strategy is [-7.48%, 61.69%], indicating that we are not 
confident that betting on all swarm picks would return a 
positive ROI (p=0.112).  

  Fig 8. Cumulative simulated betting performance of fixed 
bets on all games predicted 

 



So, while the swarm was significantly more accurate at 
predicting outcomes than Vegas Odds, we cannot be confident 
that betting on the swarm outcomes would return a positive 
ROI. Two factors could have contributed to this difference: (a) 
Vegas Odds includes a 2-5% “Bookie’s Cut” in all outcomes 
to allow sportsbooks to make money, impacting the ROI 
simulation, but averaged out for the Accuracy analysis, and 
(b) the compounding nature of the simulation’s bankroll 
increases the variability of the success of this betting strategy 
relative to Vegas Odds.  

To assess whether the behavioral patterns in these swarms 
could be used to precisely forecast the outcome of games, we 
next compared the performance of CI-selection methods to the 
performance of Vegas Odds over the selected games. To do 
so, the Expected ROI of each of the 238 games was calculated 
using the Swarm Conviction Estimator and ROI Estimation 
machine learning programs. The Expected ROI of each game 
was used to determine if the game should be bet upon. Three 
strategies for betting on these values are compared: (1) betting 
on all games with an expected positive ROI, (2) betting on 
games with an expected ROI above 10%, and (3) betting on 
games with an expected ROI above 20%. Of the total 238 
games, these betting strategies selected 202, 137 and 92 games 
to bet on respectively.   

The accuracy and ROI from these selections of games, 
referred to as the CI-selected games, was compared against the 
accuracy and ROI from betting on swarm picks over all 
games.  The simulated performance of all models when 
betting against Vegas (including the impact of the Bookie’s 
cut) is shown in Figure 9.  In these simulations, the higher the 
expected ROI cutoff of the betting strategy, the higher the 
season-end ROI. The strategy with the highest ROI was the 
CI-selected 20%+ method, which returned a 56.6% ROI over 
the 25-week season.  

 

Fig 9. Cumulative simulated betting performance of all vs. CI-
selected games at various thresholds 

 The final ROI of each method is shown in Table 1. To 
assess whether this amplification of ROI is significant 
compared to the all-swarm-picks method, the season-end ROI 
of each selection method were compared over 10,000 
bootstrapped season simulations.  The CI-selection methods 

were found to frequently outperform the all-swarm-picks 
method over a full simulated season (up to 77% of the time), 
but not frequently enough to be confident that the CI-selection 
methods were outperforming the all-picks method due to 
random chance (p=0.23).   

 The probability that each of these methods returned a 

positive ROI due to random chance was calculated over these 

10,000 bootstrapped seasons as shown in Table 2. Notably, the 

20% CI-Selected games generated a positive return on 

investment 89.11% of the time, meaning that this betting 

strategy had roughly an impressive 9 in 10 chance of ending 

the season with a financial gain.  

  

  
Selection Method 

ROI (end 

of season) 

Probability of 

Outperforming 

All Swarm Picks 

Probability 

of Positive 

ROI  

All Swarm Picks 
(238 games) 

24.7% - 88.80% 

Expected ROI  > 0%  
(202 games) 

29.5% 0.3304 88.87% 

Expected ROI > 
10%  

(137 games) 
39.5% 0.3059 87.55% 

Expected ROI > 
20%  

(92 games) 
56.6% 0.2330 89.11% 

 

Table 1. Simulated betting performance of all vs. CI-selected games 
at various thresholds 

To investigate why the ROI can be doubled as compared 
to the All Swarm Picks method, but statistical significance 
was not found, the bootstrapped season-end ROI histogram 
was plotted in Figure 10. The variance of the bootstrapped 
ROI of the most aggressive strategy (Expected ROI > 20%) 
was high in comparison to the All Swarm Picks method, likely 
because of the small sample size of the method: it selected 
only 40% of games to bet on. 

 

Fig 10. Bootstrapped average accuracy of all swarm picks vs CI-selected 
picks (expected ROI > 20%) 



 As games were selected with high expected ROI, the 
simulation ROI increased. This suggests that the Swarm 
Conviction Estimator and ROI Estimation programs are 
translating the swarm behavior into an accurate relative 
ranking system that can be used to select games where the 
Vegas Odds are inaccurate, and a positive ROI can be 
expected. These programs can, in turn, be used to bet on 
games and improve the ROI of the Swarm Intelligence system.  

VI.  CONCLUSIONS 

 Can the unique deliberation behaviors captured from live 
human participants during real-time swarm-based forecasts be 
analyzed to assess the likelihood of forecast accuracy?  
Furthermore, can such an assessment be used to identify the 
strongest forecasts among a set of forecasts (e.g. the best bets 
against the Vegas odds)? The results of this study suggest 
strongly this may be the case. As demonstrated across 25 
consecutive weeks of forecasting the 2017-2018 NBA season, 
a machine learning program, configured to analyze the real-
time behavioral characteristics of swarms of approximately 35 
typical sports fans, was able to both select outcomes of the 
games more accurately and outperform the betting success of 
the swarm itself. In fact, although both swarm-based methods 
were able to outperform the Vegas betting market at predicting 
the outcome of select games each week, the machine learning 
program more than doubled the ROI of the unaided swarm’s 
betting strategy and did so without training on any NBA data.  

 It’s important to note that this study was limited by the 
availability of training and testing data: only one season of 
each of the three sports in this study was available for training, 
and only one sport was used for testing. Future work with 
more extensive historical datasets may enable even more 
accurate results.  Additionally, the games covered in this study 
were not forecast probabilistically, due to the lack of suitable 
data to perfectly calibrate the Conviction Indexes to NBA. 
Future work aims to generate probabilistic forecasts. In 
addition, future work will investigate the success of behavioral 
swarm analysis in different settings, will strive to improve to 
optimize the CI for general and calibrated settings, and will 
refine the method in which bets are placed to allow for more 
sophisticated betting mechanisms (i.e. using the Kelly 
Criteria), as we believe there remains substantial room for 
improvement when optimizing a wagering strategy against 
Vegas Odds based on swarm-based predictive intelligence.  
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