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Abstract. New technologies enable distributed human teams to form real-time systems modeled 
after natural swarms. Often referred to as Artificial Swarm Intelligence (ASI) or simply “human 
swarming”, these real-time systems have been shown to amplify group intelligence across a wide 
range of tasks, from handicapping sports to forecasting financial markets. While most prior research 
has studied human swarms with 20 to 100 members, the present study explores the ability of ASI to 
amplify accuracy in small teams of 3 to 6 members.  The present study also explores if conducting 
multiple swarms and aggregating by taking a “vote of swarms” can further amplify the accuracy.  A 
large set of 66 small teams were engaged in this study. Each team was given a standard subjective 
judgement test. Participants took the test both as individuals and real-time swarms.  The average 
individual scored 69% correct, while the average swarm scored 84% correct (p<0.001).  In addition, 
aggregation of multiple swarms revealed additional amplifications of accuracy.  For example, by 
randomly selecting sets of 3 swarms and aggregating by plurality vote, average accuracy increased 
to 91% (p<0.001). These results suggest that when small teams make subjective judgements as real-
time swarms, they can be significantly more accurate than individual members, and that their 
accuracy can be further amplified by aggregating the output across small sets of swarms. 
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1 Introduction 

In the natural world, Swarm Intelligence (SI) enables social organisms to rapidly aggregate their 
collective insights and reach optimal decisions by forming real-time closed-loop systems that converge 
in synchrony. Swarm Intelligence has been deeply studied across many social species, from schools of 
fish and flocks of birds, to swarms of honey bees.  In recent years, advances in networking technology 
and artificial intelligence have enabled human groups to form similar systems online, moderated by AI 
algorithms. Often referred to as Artificial Swarm Intelligence (ASI) or simply “human swarming,” this 
novel approach has been shown to significantly increase the accuracy of group decisions across a wide 
variety of tasks, from handicapping sporting events to forecasting financial markets [1 - 7].  
 

  While ASI has been found to significantly amplify decision-making accuracy in human groups 
comprised of 20 to 100 members, few studies have investigated the use of swarming among small groups 
on the order of 3 to 6 members. This is important to scholarship and practice as many important decisions 
are made by small teams. 

2 Enabling “Human Swarms” 

Unlike birds, bees and fish, humans have not evolved the natural ability to form real-time swarms, as we 
lack the innate mechanisms used by other species to form closed-loop systems. Schooling fish detect 
vibrations in the water around them. Flocking birds detect high-speed motions propagating through the 
group formation. Swarming bees generate complex body vibrations called a “waggle dance” that encode 



assessment information.  To enable networked human groups to form similar closed-loop systems, a 
cloud-based platform called “swarm.ai” was developed, as shown below in Figure 1.  It enables 
distributed human groups, connected over the internet, to make collective predictions, decisions, and 
assessments by working together as closed-loop swarms. 
 
     When using the swarm.ai platform, networked human teams answer questions by collaboratively 
moving a graphical pointer to select from a set of answer options. Each participant provides input by 
manipulating a graphical magnet with a touchscreen or mouse. By adjusting the position and orientation 
of their magnet with respect to the moving puck, participants express their intent, not as a discrete vote, 
but a stream of vectors that varies freely over time. Because all members adjust their individual intent 
continuously in real-time, the swarm explores the decision-space, not based on the input of any single 
member, but based on the emergent dynamics of the full system. The complex behavioral interactions 
among the full population are processed by swarming algorithms in real-time, empowering the unified 
system to converge on solutions that maximizes the collective confidence and conviction of the group. 
 

 
Fig. 1. Architecture of the swarm.ai platform with graphical client and cloud-based AI engine 

     It is important to note that participants not only vary the direction of their intent but also modulate the 
magnitude of their intent by adjusting the distance between their magnets and the pointer, which is 
commonly represented as a graphical puck. Because the graphical puck is in continuous motion across 
the decision-space, users need to continually move their magnets so that they stay close to the puck’s 
rim. This is significant, for it requires that all participants, regardless of group size or composition, to be 
engaged continuously throughout the decision process, evaluating and re-evaluating their intent in real-
time. If a participant stops adjusting their magnet with respect to the changing position of the puck, the 
distance grows and the participant’s influence on the group’s decision wanes.  
 
     Thus, like bees vibrating their bodies to express sentiment in a biological swarm, or neurons firing to 
express conviction levels within a biological neural-network, the participants in an artificial swarm must 
continuously update and express their changing preferences during the decision process or lose their 
influence over the collective outcome. This is generally referred to as a “leaky integrator” structure and 
common to both swarm-based and neuron-based systems. In addition, intelligence algorithms monitor 
the behaviors of swarm members in real-time, inferring their relative conviction based on their actions 
and interactions over time.  This reveals a range of behavioral characteristics within the population and 
weights their contributions accordingly. 

3 Accuracy Study 

To assess the ability of ASI to amplify the accuracy of team decisions in subjective judgement tasks, a 
large study was conducted across a set of 66 working groups (i.e. business teams), each of 3 to 6 
members. Each of these teams were already engaged in a long-term project together and had already 
established a working relationship among themselves. In total, 330 subjects participated in this study. 



All were college students in business, communication studies, and engineering courses, for which the 
team project was a significant component.  
 

 
 

Fig.2.  Sample Question from Standard RME Test 
 
To rigorously measure accuracy in a standardized subjective judgement task, a widely used instrument 

was employed known as the “Reading the Mind in the Eyes” or RME test [8]. The test includes 35 
questions, each of which provides a facial image cropped so that only a narrow region around the eyes is 
shown.  A set of four options are provided that describe the emotion expressed by the person in the image, 
requiring participants to assess the emotional state based only on the eyes. An example question from a 
standard RME test is shown above in Figure 2.  Four options are provided, only one of which accurately 
represents the emotion of the depicted individual.    

 
Prior studies have shown that the RME test is a reliable instrument with strong internal consistency 

and test-retest stability [9].  The performance in this subjective judgement task has been shown to indicate 
the Social Sensitivity of the test taker and is generally used for that purpose. [10-12]. To test whether 
real-time swarming enabled small working groups to amplify their performance in the RME task, a two-
stage process was employed.  First, each of the 330 study participants were administered a 35-question 
test individually through an online survey.  To limit bias and knowledge of correct answers, individual 
scores were not disclosed. In the second stage, each of the 66 teams was administered the RME test 
through an online swarming platform.  This enabled each team to converge on each subjective judgement 
by working together as a real-time system, moderated by swarming algorithms.  Teams were discouraged 
from communicating with each other verbally during the assessment, instead relying only on the closed-
loop interaction afforded by the platform.  

 
For each of the 35 subjective judgements in the test, the platform displayed one of the 35 facial images 

to all members of each team, along with the four potential assessments of that image. Each team was 
allotted up to 60-seconds to coverage upon an answer as a real-time swarm. Figure 3 below is a snapshot 
of a team member’s screen during a real-time swarm response. The magnets in the image represents the 
pull of each teammate at one instant in time. It should be noted that to discourage conformity, participants 
did not see the magnets during the actual swarming session. 

  

 
Fig. 3. Swarming Group responding to RME question. 



4 Data and Analysis 

The RME test was administered to 330 individuals across 66 teams and produced four unique datasets. 
First, we received fully completed individual assessments from 283 participants (86% response rate) 
totaling over 9,000 item responses. These responses were used to calculate individual RME scores for 
each participant. Second, these same responses were aggregated by team to generate a “plurality vote” 
RME score for each question.  This was calculated by assessing the most popular answer among the team 
for each question. For questions where the vote was split evenly across multiple answers (i.e. there was 
no plurality winner) a “deadlock” was determined and classified as incorrect. This provided a dataset of 
over 2,000 plurality vote responses. Third, a swarm RME score for each team was calculated from the 
responses collected through the online swarming platform. This provided a dataset of over 2,000 swarm-
based responses. For questions where the swarm could not converge upon an answer within the 60 second 
time limit, a “deadlock” was determined and classified as incorrect.  
 

Finally, a “vote of swarms” RME score was generated by selecting random grouping of swarms for 
each question from the set of 66 teams and determining the final decision by plurality vote across the 
grouping. This was performed using a bootstrapping technique across a range of groupings of size S=3 
to S=10 and repeated 1000 times for each size. For example, for S=3, random groupings of three swarms 
were selected from the dataset and an RME score was generated based on a plurality vote across those 3 
swarms. This process was repeated 1000 times for groupings of 3 swarms. 

5  Results 

Across the set of 330 subjects, each participating in one of 66 teams, a comparison was performed among 
four conditions:  
 

1. Individuals - participants taking RME test alone 
2. Votes - teams taking RME test by plurality vote 
3. Swarms - teams taking RME test as real-time systems 
4. Votes of Swarms – taking plurality vote among swarms 

 

Mean scores and error rates for RME were calculated for the individual, plurality, and swarm 
generated scores. As shown in the table of Figure 4 below, the average individual RME score was 24.3, 
which corresponds to an error rate of 30.6%.   

 
Fig. 4. Error Rates and Confidence Intervals 

The average of each team’s plurality RME score was 25.45, which corresponds to an average error 
rate of 27.3%.  When enabling the teams to work together as a swarm, the average RME score increased 
to 29.4, which corresponds to an average error rate of 16.0%.  In other words, by working together as a 
swarm, the 66 teams, on average, reduced their error rates by 41%. This demonstrates that working as a 
swarm can significantly increase accuracy in subjective judgement tasks as compared to both individual 
performance and team performance by plurality vote. 

 
To assess statistical significance, a bootstrap analysis of the error rate for each method was performed 

across 10,000 trials. The 95% confidence intervals and p-values were calculated for the difference between 
individual RME, plurality RME, and swarm RME scores. The results show that the swarm significantly 
outperforms both individual (μdifference = 14.6% error, p < 0.001) and plurality scores (μdifference = 11.3% 
error, p < 0.001).  The bootstrapped error comparison is shown below in Figure 5.  



 
Fig. 5. Bootstrapped Average Error Rate 

 
With respect to deadlocks, a comparison was made between the rate of deadlocks determined by 

plurality vote as compared to the rate of deadlocks reached by swarms. Across the 66 working groups, 
plurality voting resulted in deadlocks in 14% of questions. Across those same groups, when working 
together as swarms, the rate of deadlocks dropped substantially to 0.6% of questions. This is a significant 
improvement, reducing the need for further steps to resolve undecided groups.   

 
In addition, an analysis was performed assuming deadlocked votes were resolved by giving partial 

credit for tied answers that include a correct response: half credit for a two-way tie, third credit for a 
three-way tie, etc. To balance this, deadlocked swarms were given the chance to resolve immediately 
following a deadlock in another 60-second swarm, with the answer chosen in this second round selected 
as the final answer. There were no swarms that deadlocked twice in a row.   

As shown in the table of Figure 6 below, when deadlocks were resolved using partial credit, plurality 
vote averaged an RME score of 27.9 (an error rate of 20.4%).  When enabling the swarms to work 
together as real-time systems and resolve their deadlocks in a follow-up swarm, the swarm RME score 
increased to 29.4 (an error rate of 15.9%).  In other words, even when giving partial credit for deadlocks 
in group responses determined by plurality vote, the swarm outperformed. 

 
 

 
Fig. 6. Error Rates and Confidence Intervals with Deadlocks Resolved. 

 
To assess statistical significance, a bootstrap analysis of the error rate for each method was again 

performed across 10,000 trials. We find that the swarm outperforms both the plurality vote (μdifference 
= 4.5% error, p < .001) and individuals (μdifference = 14.7% error, p < .001). The bootstrapping of the 
error rate confidence intervals is shown below in Figure 7. 
 



 
Fig. 7. Bootstrapped Average Error Rate 

 
In addition to comparing against the average individual, the swarm can be compared against all 

individuals. On average, swarms are in the 92nd percentile of individuals, indicating that an average 
swarm scores better than 92.2% of individuals taking the test alone. The histogram of user performance 
and average swarm performance is shown below in Figure 8. 

 

 
Fig. 8. Bootstrapped Average Error Rate 

 
Finally, we explored the aggregation of swarm responses by plurality vote to assess if the accuracy on 

the subjective judgement RME test could be further amplified as compared to individual swarm 
responses.  This process, referred to herein as “aggregations of swarms,” was conducted by bootstrapping 
the average error rate of aggregations of swarms across a range of aggregation sizes from S=3 to S=9, 
with 1000 iterations of randomly selected aggregations performed for each aggregation size.  The results 
are shown below in Figure 9. The single swarm case (S=1) is bootstrapped and shown to depict how 
error rate decreases as the number of swarms aggregated increases. 

 



 
Fig. 9. Accuracy when Swarms are Aggregated by Plurality Vote 

 
We find that increasing the number of swarms aggregated decreases the error rate. In addition, the 

variation in performance decreases as the number of swarms aggregated increases. Not only do votes of 
swarms become more accurate as more swarms are aggregated, but they also become more consistent. 
The aggregation of as few as three swarms significantly outperforms single swarms (μdifference = 6.9% 
error, p = .007) and the aggregation of five swarms significantly outperforms the aggregation of three 
swarms (μdifference = 2.3% error, p < .044).   

 
 The bootstrapped average error histogram created for individuals, swarms, and aggregations of 

three swarms is shown below in Figure 10. We find that an aggregation of three swarms outperforms 
individuals by an average error of 21.3%. So, by working together in swarms, and then aggregating three 
swarms together, the average error is reduced by 70% as compared to individual performance. 

 
Fig. 10. Individual vs Swarm vs Aggregation of Swarms 

 

6 Conclusions 

The results of this study suggest that small “human swarms” are significantly more accurate than 
individuals in subjective judgement tasks. As demonstrated across 66 working groups, each of 3 to 6 
members, subjective judgement accuracy increased from 69% correct to 84% correct when participants 
worked together as real-time swarms. This corresponds to a reduction in error rate by 41%.  In addition, 



the results of this study suggest that small human swarms are significantly more accurate than those same 
groups reaching subjective judgements by plurality vote, which demonstrated 73% accuracy. The 
probability that the swarm outperformed the individuals and the group vote by chance was very low (p 
< 0.001).  
 

In addition, results of this study suggest that by aggregating the output from multiple human swarms, 
we can further increase accuracy on subjective judgment tasks.  A range of aggregation sizes were 
explored from S=3 to S=9.  Even when aggregating only three swarms at a time (S=3), a significant 
increase in accuracy was observed, boosting performance from 84% correct for single swarms to 91% 
for aggregations.  In other words, by having small human groups perform subjective judgement tasks as 
swarms, and then aggregating small sets of swarms, individual performance was increased from 69% 
accuracy (50th percentile) to 91% accuracy (98th percentile).  These are a very significant results and 
suggests that real-time swarming may be a powerful method for boosting team performance, even among 
small teams of only 3 to 6 members. 
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