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Abstract— Many species reach group decisions by deliberating 

in real-time systems. This natural process, known as Swarm 

Intelligence (SI), has been studied extensively in a range of social 

organisms, from schools of fish to swarms of bees. A new technique 

called Artificial Swarm Intelligence (ASI) has enabled networked 

human groups to reach decisions in systems modeled after natural 

swarms. The present research seeks to understand the behavioral 

dynamics of such “human swarms.” Data was collected from ten 

human groups, each having between 21 and 25 members. The 

groups were tasked with answering a set of 25 ordered ranking 

questions on a 1-5 scale, first independently by survey and then 

collaboratively as a real-time swarm. We found that groups 

reached significantly different answers, on average, by swarm 

versus survey (p=0.02). Initially, the distribution of individual 

responses in each swarm was little different than the distribution 

of survey responses, but through the process of real-time 

deliberation, the swarm’s average answer changed significantly 

(p<0.001). We discuss possible interpretations of this dynamic 

behavior. Importantly, the we find that swarm’s answer is not 

simply the arithmetic mean of initial individual “votes” (p<0.001) 

as in a survey, suggesting a more complex mechanism is at play—

one that relies on the time-varying behaviors of the participants in 

swarms. We publish a set of data that other researchers may use 

to investigate human swarms.   

Keywords—Artificial Swarm Intelligence, Human Swarming, 

Swarm Intelligence, Human Computer Interaction, Collective 

Intelligence, Artificial Intelligence.  

I. INTRODUCTION  

Extensive prior research has shown that groups of human 
forecasters can outperform individual forecasters by aggregating 
estimations across groups using statistical methods [1-3]. Often 
referred to as the Wisdom of Crowds (WoC) or Collective 
Intelligence (CI), this phenomenon was first observed over a 
century ago and has been applied to many fields, from predicting 
financial markets to forecasting geopolitical events. The most 
common methods involve polling a population of individuals for 
self-reported estimations and then aggregating the collected 
input statistically as a simple or weighted mean [4].  

In recent years, a new method has been developed that is not 
based on aggregating data from isolated individuals, but instead 
involves groups of forecasters working together as real-time 
systems, their interactions moderated by AI algorithms modeled 
on the natural mechanisms of Swarm Intelligence. 

Known as Artificial Swarm Intelligence (ASI) or simply 
“Human Swarming,” this method has been shown in numerous 
studies to significantly amplify the accuracy of forecasts 
generated by human groups [5-11]. As one example, a study 

conducted at Stanford University School of Medicine asked 
groups of radiologists to forecast the probability that patients are 
positive for pneumonia based on their chest x-rays. When 
forecasting together as a real-time swarm, diagnostic errors were 
reduced by over 30% as compared to groups that voted or 
averaged their probabilistic diagnoses [12].    

Behavioral biologists studying social organisms such as 
honeybees have put forth extensive theories explaining the 
mechanistic underpinnings and physics of Swarm Intelligence. 
However, no such theory has been proposed concerning the 
functional mechanisms of human swarms. While prior studies 
have shown ASI systems significantly amplify the ability of 
human groups across a range of tasks [7-12], from forecasting 
sporting events [10-12] to predicting sales volumes of new 
products [20], the present research focuses on describing the 
underlying mechanisms of such success: what influences 
individuals to change their responses in swarms, and what do 
they change their response to?  

II. THE SCIENCE OF SWARMS 

The ASI system used for this study is shown in Figure 1 
below, where a group of human participants, each using their 
own computer, is connected in real-time over a network. Each 
computer, which may be a desktop, tablet, or phone,  runs a 
unique software interface that is designed to capture and stream 
the user’s real-time input to a cloud-based processing engine.  
The engine runs swarming algorithms and sends back real-time 
output to each user, thereby creating a closed-loop system.  

 

Fig.1. System Diagram for a real-time ASI System 

 The present study uses Swarm AI technology as the cloud-
based engine.  Swarm AI is modeled on the decision-making 



processes of honeybee swarms, which have been studied since 
the 1950s and share many properties with neurological brains 
[13,14]. Both swarms of bees and brains consist of simple 
decision-making units (in this case, neurons and bees) that work 
together in real-time to identify alternatives, weigh competing 
evidence, and converge on decisions. In both swarms and brains, 
decisions emerge from competition between subgroups of 
decision-making units: when a sub-group espousing a particular 
decision or alternative is excited beyond a threshold level, the 
corresponding alternative supported by that sub-group is 
selected as the group’s collective decision. In colonial bees such 
as the honeybee, this enables hundreds of scout bees to work in 
parallel, collecting data about their environment and converging 
on a single decision, often selecting the optimal solution to 
complex multi-variable problems [15-17]. 

The similarities in decision-making mechanisms between 
“swarms” and “brains” become more evident upon a review of 
the mathematical models that describe these mechanisms. 
Primate brains are often modelled as using a mutually inhibitory 
leaky integration process [18], such as the Usher-McClelland 
model shown in Figure 2 below.  

  

 

    Fig. 2. The Usher-McClelland neuronal decision-making model 

 Swarm-based decision models are often modelled in similar 
ways to human brains: one mutually inhibitory model describing 
honeybee swarms’ decision-making process that bears a striking 
resemblance to the Usher-McClelland model of brains is shown 
in figure 3. As shown below, swarm-based decisions follow a 
very similar process, weighing the input from sub-groups of 
swarm members through mutual excitation and inhibition, until 
a threshold is exceeded.  

 

    Fig. 3. A model of mutually inhibitory bee decision-making 

 Thus, while brains and swarms are very different forms of 
intelligence, both are systems that enable optimized decisions to 
emerge from the interactions among collections of processing 
units. The goal of the present study is to supplement this general 
model of Swarm Intelligence with a detailed quantitative 
examination into the mechanisms of the human swarming 
process, as powered by Swarm AI.  

III. SWARMING SOFTWARE 

In the natural world, swarming organisms establish real-time 
feedback-loops among group members. Swarming bees do this 
using complex body vibrations called a “waggle dance.” Swarm 
AI technology was developed to groups of humans to swarm in 
a similar way. It allows groups of distributed users to form 
closed-loop consensus-building systems moderated by 
swarming algorithms [5-7]. Similarly to the decision-making 
processes of swarms of bees, Swarm AI enables human groups 
to: (a) consider evidence, (b) weigh a set of alternatives, and (c) 
converge on group decisions, all in real-time.  

An example of this system in shown in figure 4, where a 
team is in the process of answering a question by collaboratively 
moving a ‘puck’ to select one answer from a set of five choices. 
Each participant manipulates a ‘magnet’ with their mouse 
cursor, and the magnets ‘pull’ on the puck in the direction of the 
user’s cursor. The pull from each user’s magnet is visible to 
other users, and the net force from all of the magnets controls 
the movement of the puck. All users adjust the direction and 
strength of their magnet in real-time by moving their mouse, and 
as a result, the swarm moves, not based on the behaviors of a 
single user, but the behaviors of all users. Since the behavior of 
one user influences the decisions and pulling behaviors of other 
users, however, a complex negotiation forms, where the group 
is empowered to negotiate among alternatives, explore the 
decision-space, and converge upon the most agreeable solution.  

 

  Fig. 4. A human swarm answering a question in real-time 

The real-time control that participants have over the 
direction and magnitude of their ‘pull’ on the puck is important: 
the closer a magnet is to the edge of the puck, the more force it 
exerts on the puck. As the puck moves across the screen, users 
have to continually adjust their magnet to stay close to the 
puck’s rim to have maximal say in the group’s decision. This 
has the effect that participants remain fully engaged throughout 



the swarm’s decision, continually evaluating and re-evaluating 
their views and adjusting their magnet’s position in accordance 
with these views. If they stop adjusting their magnet, the 
distance between their magnet and the puck’s rim grows (or 
worse, the magnet touches the rim and exerts no force) and their 
imparted sentiment wanes.  

As a result, the participants in an artificial swarm must 
continuously update their preferences throughout the process or 
lose influence over the swarm’s outcome, just like bees vibrating 
their bodies to express favor for a new home site in a biological 
swarm. At the same time, intelligence algorithms infer the 
conviction of each swarm participant based on their behaviors 
over time, and continually change the strength of each 
participant’s magnet to reflect their conviction.  Examining 
these behavioral characteristics of individuals in detail provides 
insight towards a theory of how and why human-powered 
swarms work.  

IV. ORDERED RANKING STUDY 

A study was conducted to collect data on decision-making 

dynamics in human swarms. Ten groups of 23 to 25 subjects 

were tasked with answering a set of 25 subjective rating 

questions, each on a 1-5 scale. All questions were the same 

format, asking participants to rate the importance of an 

academic subject (e.g. Algebra) to a high school education: 

“How important is it to have taken a class in Algebra before 

graduating high school?”. Participants first provided their 

answers independently using a standard online survey. Upon 

completion, the group congregated as a real time swarm using 

the Swarm AI platform to answer the same set of questions.  

The data collected from the swarm was analyzed in two 

ways: (i) as the initial responses of participants to a question, 

calculated as the first answer chosen by each participant before 

1 second has elapsed in the swarm, and (ii) as the average 

contribution of each individual to the swarm, calculated as the 

mean response of each participant measured at quarter-second 

increments through the swarm.  
 

V. ANALYSIS AND RESULTS 

 All individuals in this study were verified to have completed 

the survey before joining the swarm, so no survey data was 

missing at the time of analysis. No swarm failed to select an 

answer in the 60 seconds allocated: all 250 questions were 

answered in between 9 seconds and 60 seconds, with an average 

time to answer of 18.8 seconds.  

 Comparing the survey results to the swarm behavior through 

time gives insight into the distinguishing characteristics of the 

swarming process itself. First, to ensure that users were 

reporting similar beliefs in both the survey and the swarm, the 

distribution of individual survey responses was compared to the 

distribution of initial individual choices (t=1 second) in the 

swarm. A paired two sample t-test was conducted and revealed 

a non-significant difference between individual survey 

responses and initial swarm behavior of those individuals across 

the full dataset (µdifference=0.10, p=0.47), indicating that users 

reported very slightly (though not significantly) higher levels of 

subject importance on average in the swarm than in the survey.  

 However, a significant difference was found between the 

average individual survey response and the final average 

individual swarm response: the final contribution of each 

individual in the swarm  was found to be higher than the average 

survey response on average (µdifference=0.70, p<0.01), indicating 

that users pulled more often for answer choices that rated the 

subject as more positive than their initial response than for 

answer choices that were more negative than their initial 

response. In other words, by the end of the swarm users on 

average reported that the subject was more important than they 

did at the start of the swarm.  

 In order to compare the final swarm answers to the survey 

answers without the positive bias introduced through swarming, 

both answer methods were normalized by converting to a z-

score such that the z-scores of each method had a mean value of 

0 and a standard deviation of 1. These z-scores therefore enable 

a fair comparison between the swarm and survey ratings of 

subject importance, since the swarm answers are no longer 

biased towards rating subjects as more positive than the survey.  

 The z-scores of the survey answers and swarm final answers 

from each group were then compared by question, as shown in 

figure 5 below. Interestingly, even after normalization there 

were significant differences between the distribution of survey 

and swarm final responses on 44% of questions (11 of 25) on 

this test, indicating that the group rated 5 subjects as more 

important in the swarm than the survey, and 6 subjects as less 

important in the swarm than the survey.  

 These differences in the distribution of responses between 

the survey and swarm point to an important effect: enabling the 

respondents to think together as a group in real-time results in 

meaningfully different answers than if the group were to respond 

asynchronously in a survey format. It’s also important to note 

that these differences were likely not due to the interface of 

swarming alone—the process of reporting a belief with a cursor 

rather than a survey or the layout of answers in the Swarm 

platform—because these significant differences did not exist 

when comparing the survey responses to the participant’s initial 

responses in the swarm, before the real-time feedback of other 

participant answers had the time to impact the initial responses 

of participants. These observed differences were thus due to the 

interaction and deliberation among participants over time.  

  

Fig. 5. 90% Confidence Interval for the difference between the Survey and 

Swarm Final responses on each question. * = (p<0.05) 



Taking question 24 (subject: Drug Education) as a case study, 

we can examine in detail how each swarm’s average answer 

changed over time when answering this question. This is 

depicted as a line plot in Figure 6, where each line represents the 

mean answer in the swarm over the course of the deliberation. 

The swarms’ final answers were significantly different from the 

swarm initial mean (p=0.001), and the survey answers 

(p<0.001). As a result, it’s reasonable to suggest that some time-

based aspect of the swarming experience, such as the ability of 

individuals to switch answers throughout the swarm, or the 

influence that each participant indirectly has on every other 

participant’s choices, was the cause of the difference between 

the swarm’s final answers and the survey’s answers.   

 

Fig. 6. Swarm Interpolations through Time for Question 23 (Drug Education)  

Looking at all 238 individuals’ behaviors in isolation, rather than 

aggregated into a swarm-level average as above, gives a better 

idea of how the individuals in these swarms changed their 

responses from over the course of the swarm. On this same 

question, individuals’ answers in the survey were not different 

from their initial beliefs as expressed at the start of the swarm 

(p=0.77). However, individuals’ average answers over the 

course of the swarm deliberation had a significantly higher mean 

(µdifference = 0.14, p<0.001) and lower standard deviation             

(µdifference =  -0.157, p<0.001) than their initial swarm responses, 

as depicted in Figure 7.  

 

Fig. 7. Initial similarities become significant behavioral differences  

These results reveal an important point: individuals are not 

simply changing their answer to conform to the arithmetic mean 

of the group. In fact, the individual’s final answers in the swarm 

were significantly different (p<0.001) than the initial arithmetic 

mean of individual initial choices within the swarm. However, 

individuals are generally pulling closer to the arithmetic mean 

through the swarm than they did at the start of the swarm, 

leading to a lower variance of individuals’ final answers than 

individual initial answers.  

So, how and when do individuals switch their pull within a 

swarm, and what influences the switch? Looking again at all 25 

questions, participants spent about 80% of the time pulling for 

their initial choice, with proportionally less time spent on 

answers farther from the initial choice, as shown in Figure 8. In 

other words, if individuals do pull for an answer that was not 

their original choice, they pull more often for a nearby option—

one closer to their original response—than an option far away. 

This suggests individuals are compromising between multiple 

competing alternatives, weighing which answers they believe in 

the most against which answers other people are expressing 

support for, rather than simply converting to the most popular 

alternative or entrenching exclusively in their initial response.  

 

Fig. 8. Histogram of the percent of time individuals spent pulling for answer 

choices of varying distance from their initial choice  



To visualize this compromise between competing alternatives in 

better resolution, a heatmap is shown in Figures 9 and 10 that 

compares the level of support for each of the five answers in the 

swarm by the initial pull of each user. 44% of all individuals 

switched at least once. Users preferentially pulled to answers 

that were (a) closer to their initial response (Figure 9), and (b) 

closer to the average group response (Figure 10). 

 

 

Fig. 9. Proportion of support for each answer other than each user’s initial pull.  

 

Fig. 10. Proportion of Individual Support for each answer, broken down by the 

distance from the initial pull to the initial group median (x axis).   

Examining Figure 10 more closely, we see that when switching, 

the most common courses of action are twofold: (a) acceding 

one answer choice towards the group median, and (b) acceding 

all the way to the group median answer. Unless they were 

originally pulling for the group median answer, individuals very 

rarely switch to an answer that’s not in the direction of the group 

median, which implies that the direction of the group’s median 

answer at the start of the swarm is highly correlated with the 

switches that users decide to make later in the swarm.  

This information collectively suggests that individual switching 

decisions may be influenced, but not explained completely, by 

the pulling behaviors of other individuals in the swarm. 

VI. DATASETS 

 To promote a better understanding of human behaviors in 

Artificial Swarm Intelligence systems, two datasets have been 

compiled and listed publicly. These datasets both contain 

anonymized individual behavioral data for authentic human 

swarms and contain over 350 individual examples of human 

swarms converging on solutions. The first dataset is named the 

Repeatability dataset, and contains the data used in this study. 

The second dataset is named the Fruit dataset, and contains the 

data used in another recent study [19]. Both datasets are visible 

on github at: https://github.com/unanimousai/rd-published-data.  

The Repeatability folder also contains pythonic code used to 

analyze the data as well as functions that were used in the 

analysis of the data and publication of this study.  

 The authors’ aim in publishing this data is to enable other 

researchers to verify the existing findings about human decision-

making in real-time swarm systems, and to encourage future 

research into real-time swarming systems.  

VII. CONCLUSIONS 

Over the course of the 25 general-opinion questions asked to 

each of 10 groups, the group’s responses when swarming were 

significantly different than their responses when surveyed. The 

results of this study suggest that the time-varying, dynamic 

expression of individual answers, and the confidence in those 

answers, may be a key reason why groups that swarm produce 

different, and often more optimal, answers than groups that are 

surveyed. What determines whether this change occurs appears 

to be a complex, multivariable problem in which the individual 

must intuitively negotiate many factors, both internal and 

external, in a short period of time, including their own 

conviction in their answer and the real-time, changing 

distribution of answers in the group at large.  

 

Future work may investigate other factors that influence 

individuals to switch their response, such as the changing 

location of the graphical puck, the amount of deliberation time 

left for the question, or the percentage of participant support for 

each of the answer options.  Other future work may build 

predictive models to rigorously forecast switches based on this 

data, to test what degree of switching behavior can be 

understood through the behavioral data in human swarms alone. 

Other future work may investigate whether people switch 

differently in different questions: do some questions cause more 

entrenchment than others?  
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