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Abstract—Artificial Swarm Intelligence (ASI) is a recently 

developed method that enables networked human groups to 

converge on more accurate group forecasts, estimations, and 

decisions. While ASI can significantly amplify collective 

intelligence, the process struggles when too large of a majority 

supports an inaccurate view, even if their average confidence is 

low. Thus, a major goal of ASI research is to increase resilience to 

low-confidence majorities. This paper introduces a new ASI 

structure called a Hyperswarm that enables a confident minority 

to more readily sway an unsure majority. The approach involves 

dividing a population P into a set of overlapping sub-groups (H1, 

H2... HP) such that each member only interacts with members of 

their subgroup. And because each subgroup overlaps multiple 

other subgroups, the local interactions quickly propagate 

throughout the full population. In this paper we simulate 

hyperswarms, showing that a confident minority can intelligently 

overcome a less confident majority, even when 70% of 

participants initially harbor the majority view. In addition, we 

explore a variety of hyperswarm design parameters and derive 

guidelines for future development.  
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I. INTRODUCTION 

In the field of Collective Intelligence (CI), it is well known 
that a large group can significantly outperform its individual 
members. For well over a century, a wide variety of aggregation 
techniques have been explored for harnessing the intelligence of 
human populations to enable more accurate decisions [1-3]. 
Artificial Swarm Intelligence (ASI) is a recent technique that’s 
been shown to significantly amplify the decision-making 
accuracy of networked human groups using algorithms modeled 
on natural swarms. Unlike votes, polls, surveys, or prediction 
markets, which treat each participant as a separable datapoint for 
statistical aggregation, the ASI process treats each individual as 
an active member of a real-time dynamic system, enabling the 
full group to efficiently converge on solutions as a unified 
intelligence [4,5].  

For example, a recent study conducted at the Stanford 
University School of Medicine showed that small groups of 
radiologists, when connected by real-time ASI algorithms, could 
diagnose chest X-rays with 33% fewer errors than traditional 
methods of aggregating human input [6,7]. Researchers at 
Boeing and the U.S. Army recently showed that small groups of 
military pilots, when using ASI technology, could more 
effectively generate subjective insights about the design of 
cockpits than current methods [8]. Researchers at California 

Polytechnic published a study showing that networked business 
teams increased their accuracy on a standard subjective 
judgement test by over 25% when deliberating as real-time ASI 
swarms [9,10]. And researchers at Unanimous AI, Oxford 
University, and MIT showed that small groups of financial 
traders, when forecasting the price of oil, gold, and stocks, 
increased their predictive accuracy by over 25% when using ASI 
method [11,12].  

While the power of swarm-based systems to amplify group 
intelligence has been validated across many disciplines, ASI can 
struggle in highly lopsided groups where an overwhelming 
majority holds a similar view. Of course, the most common 
reason for a large majority to harbor a singular view is that it’s 
correct. In such cases, traditional swarming converges 
accurately. The problem arises when a large majority suspects 
the wrong answer because of prevailing misconceptions.  In 
such situations, it is difficult for a small but confident minority 
to overcome a large, misinformed majority, even if the minority 
has significantly higher confidence. To address this problem, the 
hyperswarm technique was developed with the goal of enabling 
the sentiments of a confident minority to propagate with greater 
resilience in the face of a larger but less confident majority. 

II. FROM SWARMS TO HYPERSWARMS 

 A central feature of swarm-based decision making is that all 
participants interact in real-time, simultaneously adjusting their 
input as they converge together on group solutions. At every 
time-step, swarming algorithms modulate the influence of each 
participant based on their real-time behaviors. For example, 
participants who find themselves supporting a popular view may 
display behaviors that reflect increasing confidence, while 
participants who support an unpopular view may display 
resistance or capitulation. Swarming algorithms use this diverse 
range of behaviors to predict the conviction of each member and 
adjust their influence over time. In this way, collective decisions 
emerge that can significantly outperform traditional collective 
intelligence techniques. 

While ASI can amplify the accuracy of group decisions in 
many contexts, it can fail when a large majority supports a 
singular view, even if the majority has low confidence. This is 
because the very presence of a large majority reduces the range 
of behaviors that participants are likely to express, as members 
of the majority have no reason to show uncertainty when their 
views are validated by so many others. Thus, members of a large 
majority who harbor low confidence are not driven to reveal 
their low confidence, further strengthening the majority. As a 
consequence, traditional swarms may converge on the majority 



opinion with little opportunity for a confident minority to 
influence the group.  

 To solve this problem, the hyperswarm method was 
developed in which each member of a population is exposed 
only to a random subset a subset of other members, thereby 
driving a more diverse range of behaviors. This is achieved by 
dividing the full population P into a series of overlapping 
subgroups (H1, H2... HP) such that each participant is only 
exposed to the changing sentiments of their subgroup. And 
because the subgroups are defined with overlapping 
membership, interactions quickly propagate across the full 
population. In this way, a hyperswarm is a closed-loop system 
that can converge on a unified solution but does so with greater 
diversity of behavior than traditional swarms [14]. 

The hyperswarm method is particularly useful when a large 
majority supports a similar view, as traditional swarming fails to 
reveal hidden uncertainty within the majority. By dividing the 
population into a set of overlapping subgroups of size S, the 
hyperswarm structure creates a series of overlapping swarms, 
each with unique distributions of opinions. By statistical chance, 
some subgroups will have balanced or inverted distributions as 
compared to the full population. This will motivate behaviors 
within some subgroups that reveal uncertainty that would 
otherwise be hidden. And because of the overlapping structure, 
shifting views within the majority can propagate across the full 
population, enabling a confident minority to sway an uncertain 
majority.  

To make the hyperswarm concept more concrete, let’s 
consider a twenty member population (P=20) split into 20 
overlapping subgroups H, each of size S=7.  As shown in Figure 
1, this hyperswarm structure is modeled after a simple ring 
network in which each participant P1, P2... P20 is exposed to the 
real-time sentiments of S-1 other members through the series of 
unique but overlapping subgroups. 

 

 

Fig. 1. HyperSwarm Influence Diagram for P=20, S=7. Green arrows show 

that member P3 is exposed to six other members. Grey arrows show all other 

connections among subgroups 

 Looking closely at Figure 1, we see that member P1 is 
exposed to subgroup H1 of members P2, P3... P7. Shifting over 
one step, member P2 is exposed to subgroup H2 of members P3, 
P4... P8. This continues around the ring structure and wraps 
around at P20. In this way, each member Pn is exposed only to 
the real-time sentiments of a unique subgroup Hn. This means 
that each member Pn will react not to full population, but instead 

to their unique subgroup Hn. In other words, all members 
interact in synchrony but each is driven by potentially different 
sentiment distributions. And because all subgroups overlap, 
sentiments are quickly propagated throughout the full 
population, enabling all members to influence all others. Hence, 
a hyperswarm is a single closed-loop dynamic system in which 
behaviors are inspired locally but propagate globally.      

III. SIMULATION STUDY 

 To explore the hypothesis that hyperswarms enable 
confident minorities to sway unsure majorities, a simulation was 
created to test the hyperswarm structure on a theoretical question 
with two possible answers, A and B. The simulation was seeded 
with a population of size P of which the majority fraction M 
initially supports answer A and a minority fraction (1-M) 
supports answer B.  Each simulated member Pn of the population 
is assigned a confidence level Cn in their initial answer and is 
exposed to a unique subgroup of other members Hn. At each 
timestep, every member is assigned a simulated probability of 
switching answers depending on their simulated confidence in 
that answer and whether their answer is shared by a majority of 
other members in the unique subgroup Hn that they are exposed 
to at that timestep.  
 The simulation randomly generates a seed population of P 
members: M fraction of whom (e.g. 40%) support the minority 
answer initially and (1-M) fraction of whom support the 
majority answer initially. Each majority-respondent and 
minority-respondent are assigned a randomly-sampled 
confidence from a distribution which has average confidence CA 
and CB respectively, where CB > CA such that the minority is 
more confident than the majority. The distribution of 
confidences for groups A and B is a skewed normal distribution 
with means at CA, CB and a skewness of 5 and -5 respectively, 
shown in Figure 2 for CA=0.4, CB=0.6. In general, any 
distribution could be used in which the minority population has 
on average higher confidence than the majority population: the 
authors have used simple normal curves and Dirac delta 
functions as distributions in this simulation and have observed 
essentially identical results. 

 

Fig. 2. Distribution of  individual confidences 

Once seeded, the simulation employs a set of simple behavioral 
rules to approximate how real participants would act based on 
their initial answer, confidence level, and the distribution of 
opinions they are exposed to in their random subgroup.  These 
simulated rules allow us to estimate what percent of participants 
are likely to switch answers (or resist switching) when they find 
themselves within the minority of their unique subgroup. These 
rules were defined as follows:  



Rule 1: If a user is in a local majority, they don’t switch. (i.e. 

if they’re in the majority, there’s no motive to switch).  

 

Rule 2: If a user is in a local minority and has not yet 

switched from their original view, they switch with 

probability = (1 - confidence).  (i.e. higher confidence in their 

original view means lower probability they switch).  

 

Rule 3: If a user already switched but finds themselves in a 

local minority, they switch back with probability = 

confidence. (i.e. higher confidence in their original view means 

higher probability that they switch back).  

 

A single simulation trial that evolves according to these rules 

is shown below in Figure 3. It was initialized with a simulated 

population P=25 such that 60% of the population initially 

supported answer A and 40% initially supported answer B 

(M=0.4). Furthermore, in this simulation supporters of A have 

an average confidence CA=0.4, supporters of B have an 

average confidence CB=0.7, and the resulting confidence 

differential is CD=0.3. Each individual’s subgroup Hn contains 

6 other individuals (S=7).  

 

Figure 3: Hyperswarm evolution over 12 time-steps. 

 

Each user in this simulation (labeled 1, 2…. 25) is colored 

red if they answer A at each timestep, and green if they answer 

B. Initially, the distribution of views is randomly distributed 

across network structure, but as the simulation progresses and 

information is shared, local regions form that favor answer A 

(red) or B (green). These local regions of support propagate 

around the hyperswarm, spreading clockwise due to the 

asymmetry of the subgroup connectivity structure in this 

simulation. Since A-responding participants have lower 

confidence and are therefore more likely to switch answers than 

B-responding participants, the fraction of respondents choosing 

B grows over the course of the swarming process. In the 

particular trial shown, the effect was so pronounced that the 

distribution of support flipped from 60% of the population 

initially favoring answer A (@ t=0) to 64% of the population 

favoring answer B at the end of the swarming process (@ t=12) 

Using these rules, the simulation was run 1000 times, each 

with a randomly selected seed population of 60% favoring A 

and 40% favoring B, with CA < CB. The objective was to 

determine the probability that a population with a significant 

majority initially supporting A will switch its majority support 

to B over the duration of the swarming process.  In this way, 

the simulation allows us to estimate the effectiveness of the 

proposed hyperswarm structure and assess the conditions under 

which the hyperswarm technique enables a higher confidence 

minority to overcome a lower confidence majority.  

To provide a baseline for comparison, the simulation was 

also run using a traditional flat structure in which all members 

are exposed to all others in real-time. To emulate the flat swarm, 

we ran the simulation with a population P=25 and subgroup size 

S=25 (so all members are exposed to all others). We then set 

the population parameters to a define 60% majority supporting 

answer A and a 40% minority supporting B, with average 

confidence in B higher than average confidence in A (i.e. 

M=0.4, CA=0.3, CB=0.7, CD=.4).  Running 1000 trials of this 

configuration, we found that the flat structure never converged 

on the minority opinion. That’s because none of the simulated 

users were ever motivated to switch from the majority A answer 

(regardless of confidence level) as everyone was influenced by 

the 60% global majority supporting A. Obeying rule 1 above, 

only minority-responding participants were ever motivated to 

switch (depending on exposure and confidence). The evolution 

of this system is shown in figure 4a.  

 Next, we tested the hyperswarm structure with subgroups of 

size S=7, also with P=25, M=0.4, CA=0.4, CB=0.7 and CD=0.3, 

and found substantially improved performance.  As shown in 

Figure 4b, the 5000 simulation trials confirm that after 8 

simulated time steps, 56% of the randomly generated 

populations switched their majority preference from A to B. 

This suggests that the hyperswarm structure, when ideally 

simulated and seeded with initial conditions within certain 

bounds, can enable a more confident minority to overcome a 

less confident majority. The question remains, could other 

connection structures better enable a confident minority to 

overcome an unsure majority?  

In other words, how does the connection structure of an ASI 

hyperswarm impact the probability that the views of confident 

minority can overcome a substantially larger but less confident 

majority? To investigate this, we created five different 

connection structures and explored their impact on the minority 

group’s ability to overcome a less confident majority in the face 

of varying conditions.  
 

 

 



 
Figure 4a: Fully Connected Swarm never flips a majority. 

 
Figure 4b: After 8 time steps, hyperswarms enable 77% of simulated 

populations flip to support the initial minority view. 
  

IV. CONNECTION STRUCTURES INFLUENCE OUTCOMES 

The four connection structures we study are: (i) 

Unidirectional, (ii) Bidirectional, (iii) Random, and (iv) 

Unidirectional Small World. An example of each is given in 

Figure 5 for a population size of P=10 and a subgroup size of 

S=5.  
 The Unidirectional structure is the same as the structure in 
Figure 1, and studied in [14], where member Pj is exposed to 
members Hj={Pj+1, Pj+2, … Pj+S-1}. In the Bidirectional structure, 
member Pj is exposed to members Hj={Pj-(S-1)/2, … Pj-2, Pj-1, Pj+1, 
Pj+2, … Pj-(S-1)/2}, where S is constrained to be odd to ensure the 
structure is symmetric.  
 The Unidirectional Small World structure is created using 
the Watts-Strogatz approach [13] by first creating a 
Unidirectional connection structure, and then rewiring 25% of 
connections randomly—without replicating existing 
connections and ensuring that each member still is exposed to S-
1 other members. This structure was created to examine whether 
minimizing the path length between hyperswarm members 
would speed up the rate at which confident minority opinions 
can propagate through the population.  
 The random structure is initialized purely randomly, again 
such that each user is exposed to exactly S-1 other members. 
Next, we explore how the connection structure between 
participants impacts the likelihood that a confident minority can 
overcome a weak majority across a wide variety of initial 

conditions, including the impact of population size P, subgroup 
size S, the population fraction that supports the minority view 
M, and the difference in average confidence between members 
of the minority and majority CD. 
 To do so, we ran this simulation with P=10, S=5, M=0.4 and 
CD=0.4 for each of the connection structures. The fraction of 
hyperswarms in which the initial minority answer becomes the 
global majority answer by timestep 5 and timestep 20 is reported 
in Table 1 for each of these cases. We expected that the 
Bidirectional or Small World models would perform best, since 
they enable two-way communication that has the potential to 
propagate across the network quickly. However, we observed 
that the Unidirectional structure outperformed the other 
connection structures by a large margin—flipping 48% of 
majorities by the 5th timestep and 54% of majorities by the 20th 
timestep.  

 
Table 1: Probability of Minority Flip by connection structure. 

 

 
 
 To examine the sensitivity of these results to the parameters 
that we chose for this simulation, we reran the simulation for a 
range of parameter values—first, by varying the population size 
P and subgroup size S (Figure 6), and then by varying the initial 
minority fraction M and confidence difference between groups 
CD (Figure 7). 
 

          
Unidirectional                Bidirectional              

        
Unidirectional Small World                  Random             . 

 
Figure 5: Hyperswarm Influence Diagram for P=10, S=5, for each of 
the five studied connection structures. Red arrows show that member 

P3 is exposed to four other members. Grey arrows show all other 
connections among subgroups. 



 

Figure 6 shows that the Unidirectional structure outperforms 
the Unidirectional Small World structure for a wide range of 
population sizes P and subgroup sizes S. This result holds for the 
Bidirectional, and Random structures to an even greater degree. 
An important case shown on these heatmaps is when the 
subgroup size approaches the population size (P=S), which is 
equivalent in all cases to a global connection structure. In these 
global connection structures, all individuals can see all other 
individuals, and the global majority is known to all participants, 
so there’s never a chance at flipping the minority answer. In this 
way, reducing the subgroup size and creating a hyperswarm 
enables the group to aggregate their insights by their confidence, 
rather than their initial answer distribution. 

Figure 7 shows us that the Unidirectional structure again 
outperforms the Unidirectional Small World structure for a wide 
range of initial minority fractions M and confidence differences 
CD between the minority and majority populations. These 
results hold for the Bidirectional and Random structures also. 
There are two general trends that we can discover through 
Figure 7: first, across all these connection structures, the lower 
the initial fraction of members responding B (the initial minority 
answer), the lower the likelihood that B will overcome A 
regardless of the difference in confidence between the two 
groups. This is to be expected—the fewer people support B, the 
fewer subgroups will have B majorities. Second, the higher the 
group’s average confidence in B relative to the average 
confidence in A, the more likely the minority (B) will overcome 
the majority (A). Both trends are to be expected and fit with the 
author’s intuition about swarm-like systems in real groups.  

  

 
 

Figure 6: Probability of minority flip after 20 timesteps for the 

Unidirectional and Unidirectional Small World connection structures 

across a range of population and subgroup sizes.  

 

 

  
 Figure 7: Probability of minority flip vs minority fraction M and 

confidence difference CD after 20 timesteps for the Unidirectional 

and Unidirectional Small World connection structures.  
 

To gain better intuition into why the Unidirectional structure 
performs so well, we created the visualization shown in Figure 
8 in which each row represents a time-step of the evolving 
distribution of opinions across the full population. At time t=0 
we initialize each simulation with the same randomly-generated 
seed population.  Each simulated user supports either answer A 
(shown in purple) or answer B (shown in yellow) and harbors 
a randomly assigned confidence level in their initial view. We 
then visualize the evolution of the system across 20 timesteps, 
showing the changing distribution of views over time.  

In all four graphs, we use P=50, S=7, M=0.4, CD=0.4; the 
initial majority answer is A (purple), while the initial minority 
answer is B (yellow). To compare the Unidirectional structure 
with the other structures, we used the same seed population in 
four visualizations (a), (b), (c), and (d) shown above but varied 
the connectivity model such that (a) is the Unidirectional 
structure, (b) is the Bidirectional structure, (c) is the 
Unidirectional small world structure, and (d) is the Random 
connectivity structure. 

Qualitatively, the Unidirectional structure has two 
wavefronts that both propagate leftwards around the 
population—a fast wavefront where A-responding participants 
are exposed to a near-unanimous response of B and quickly end 
up converting, and a slower wavefront where B-responding 
participants are exposed to a unanimous response of A and 
slowly decide to convert. In the end, B wins because people 
convert to B faster than they convert to A. This is only possible 
because participants are exposed to a different set of people than 
they broadcast to: the flow of information is unidirectional.  



In the Bidirectional structure, we observe no such 
information flow: instead, the Bidirectional structure creates 
clusters of uniform answers that do not propagate in any 
direction. This occurs because individuals on all edges of these 
clusters see themselves as a part of the majority of their 
subgroup—their subgroup is evenly split and their answer tips 
the tie into a majority. This preserves the diversity of initial 
answers—a unanimous decision is unlikely—and does not lead 
to consensus forming for the highest-confidence group answer.  

Finally, in the Unidirectional Small World and Random 
structures, each subgroup is exposed to a greater variety of 
opinions from around the global population, leading to more 
nonlocal information propagation and, paradoxically, a slower 
global transition to the minority answer.  

 

  

  
Figure 8: Heatmaps of user responses for the same initialization by 

connection structure (clockwise from top left): Unidirectional, 

Bidirectional, Unidirectional Small World, and Random. 

 

V. CONNECTION STRUCTURE INFLUENCES SUBGROUP 

AGREEMENT 

Why does nonlocal information propagation have such an 
impact on the final outcomes of this system?  

To better understand this, we examine how each structure 
exposes members to beliefs that agree or conflict with their own 
over time. We ran 100 hyperswarms with P=50, S=7, CD=0.4, 
and M=0.4 as before, and calculate the fraction of participants 
who agree with the majority of their subgroup at each timestep 
in figure 9.  

As we expect, there are minimal differences initially be-
tween connection structures: upon initialization at T=0, about 
two thirds of users agree with their subgroup majority regardless 
of the connection structure used. Over time, however, the 
Unidirectional structure exposes more individuals to conflicting 
options than any of the other network structures. This creates 
more opportunities for each individual to be challenged by 
opposing views, enabling the group to more often reach the 
answer it is collectively most confident in, rather than simply 
converging on the answer that most people initially support.  

We also include a Bidirectional Small World structure here, 
to show that the effect of the 25% of random connections have 

the impact of bringing the Experienced Agreement curve closer 
to that of a random connection structure.  

 
Figure 9: Fraction of participants who agree with the majority 

sentiment of their Hyperswarm subgroup by connection structure. 
 

VI. DISCUSSION 

In this paper we simulated hyperswarm dynamics, showing 
that a confident majority can sway a less confident minority in 
real time, even when 70% of the participants initially harbor the 
majority view. We also demonstrated that this is not the case for 
traditional swarms in which participants can see all other 
participants.  

We then explored the impact of the chosen connection 
structure on these results by comparing the likelihood that a 
confident minority could flip a less confident majority when 
connected by Unidirectional, Bidirectional, Random, and Small 
World structures. We found that Unidirectional structures 
enabled confident minorities to prevail across a substantially 
wider range of trials than did Bidirectional structures, whether 
they had symmetric connections, small world connections, or 
random connections. 

While this result may seem counter-intuitive, it does con-
form with many swarming structures found in nature such as 
schooling fish and flocking birds wherein each member is 
influenced primarily by members directly ahead or adjacent, but 
not by members behind them. In other words, biological Swarm 
Intelligence has evolved using Unidirectional structures with 
great success.  

Why is this? Based on the simulation results herein, we 
propose both low-level and high-level explanations. At a low 
level, we compared the switching behaviors of individuals in 
different connection structures and found that the Unidirectional 
structure propagates information around the hyperswarm in 
waves, such that the higher-confidence answer in the population 
propagates faster and ultimately converts members more rapidly 
than the lower-confidence answer. At a high level, we 
demonstrated that the Unidirectional structure maintains a 
higher level of discord in the hyperswarm over time: fewer 
people are exposed to subgroup majorities that agree with them 
at each timestep. We argued that this leads to a global decision-
making process that tends to select the answer in the population 



that has the highest average confidence, rather than the answer 
that people most agree upon at the outset.   

Our aim in this work is to shed light onto what collective 
intelligence structures enable groups to reach optimal decisions. 
Often, a confident minority of people in a group can accurately 
select an optimal answer, while a less-informed majority of 
people select a suboptimal answer. In classical swarms, the less 
confident majority often overpowers the confident minority; our 
results show that this effect can be mitigated with the appropriate 
design of hyperswarms and suggests that local, unidirectional 
information flow is important to hyperswarm construction.   

While these simulations are promising, the results are limited 
in that we only investigated a single behavioral rule—one in 
which a user who finds themselves agreeing with their subgroup 
majority never switches—so future work will investigate other 
behavioral rules where this is not the case. There are, of course, 
many other network structures that could be explored, including 
network-like and multidimensional models (e.g. toroidal 
networks rather than ring networks). Further, future work will 
seek to validate that hyperswarm structures enable these effects 
in real human populations. 
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