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Abstract. We introduce hyperswarm ranking, a new collective intelligence 

technology based on the biological principle of Swarm Intelligence, and show 

that it enables networked human groups to collaboratively rank independent sets 

of items with significantly higher accuracy than traditional methods. While prior 

approaches, such as survey-based Wisdom of Crowd (WoC) techniques, are 

effective at amplifying groupwise accuracy, we show that this new approach 

significantly outperforms on a series of general knowledge questions, producing 

rankings that are 8.1% more accurate than WoC (p<0.01). This translates into an 

impressive 39.5% amplification of the traditional “WoC effect.” Finally, we 

show that the use of hyperswarm ranking enables networked human groups to 

generate groupwise rankings much faster than other commercially available tools 

that leverage the accuracy benefits of Artificial Swarm Intelligence, cutting the 

time required of human participants by more than half.  
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1 Introduction 

For well over a century, Collective Intelligence (CI) researchers have shown that human 

groups can amplify the accuracy of groupwise forecasts, estimations and evaluations. 

This is most commonly achieved through statistical aggregation methods referred to as 

Wisdom of Crowds (WoC) [1-3]. In a typical WoC scenario, individual estimates are 

collected from participants in isolation, often through blind survey. These estimates are 

then aggregated mathematically into an average forecast that is generally more accurate 

than the raw estimates produced by most individuals in the group. In recent years, an 

innovative new method has been developed that is not based on aggregating data from 
isolated individuals, but instead turns human groups into real-time systems moderated 

by intelligence algorithms modeled on the principle of Swarm Intelligence. 

Known as Artificial Swarm Intelligence (ASI) or simply “Human Swarming,” this 

method was first introduced in 2015 [1] and has been shown through many studies to 

significantly amplify the accuracy of groupwise forecasts [6-11]. For example, a study 

conducted at Stanford University School of Medicine tasked groups of radiologists with 



diagnosing pneumonia based on chest x-rays. When forecasting together as real-time 

swarms, diagnostic errors were reduced by over 30% compared to WoC methods [12].  

While prior studies have shown that commercial ASI platforms (such as Swarm® 

from Unanimous AI) can significantly amplify the performance of human groups in a 

wide range of tasks [7-12] from forecasting sporting events [10-12] to predicting sales 

volumes of new products [20], the present research focuses on collaborative ranking 

tasks in which networked human groups must rank sets of independent items and 
converge on the most accurate orderings they can agree upon. 

Prior studies have also extended the principle of Artificial Swarm Intelligence to the 

concept of Hyperswarms, in which real-time distributed groups are split into a plurality 

of overlapping subgroups such that each participant can only observe the fraction of 

other participants in their unique subgroup. Because the views of participants overlap 

but are not identical, each user is provided with a unique stimulus regarding the views 

of other participants and yet interactions among group members can still propagate 

across the full population as they do in traditional swarming interfaces. Theoretical 

research has shown that hyperswarms could enable groups to reach better decisions as 

compared to swarms with fully connected visibility [23,24], but to date no human 

studies have confirmed this theory.  

In this paper, we introduce a new ASI technology called hyperswarm ranking. This 
technology enables networked human groups to collaboratively rank independent sets 

of items with significantly higher accuracy than survey-based WoC approaches.  In 

addition, hyperswarm ranking is significantly faster at reaching collaborative results 

than prior swarm-based methods. And finally, a number of innovations have been 

developed that enable this new ranking technology to leverage the benefits of real-time 

Swarm Intelligence while also enabling the majority of participants to engage the 

system asynchronously. This is  a notable breakthrough for ASI systems, as all previous 

methods that leverage the power of Artificial Swarm Intelligence have required that the 

full population of participants engage synchronously with at least a sub-population of 

other participants. This is a significant logistical constraint that has been resolved in 

collaborative ranking tasks, as will be described in Section 2. It is also the first known 
test of hyperswarm technology on human subjects in a rigorously controlled task.  

2 Method 

2.1 The HyperRank Testbed 

To quantify the value of this new hyperswarm ranking technology in authentic 

ranking tasks, we developed the HyperRank Testbed, a prototype system that enables 

distributed groups of human users to connect to a central server using any standard 

phone or personal computer running a standard browser. The HyperRank system 

provides a unique graphical user interface for collaborative ranking and enables 

networked groups to collectively rank sets of items, as shown in Figure 1 below. Each 

question asked in the HyperRank system is answered through a series of discrete 

rounds in which collaborative groups rank and re-rank items. For the testing described 

herein, three rounds of groupwise ranking were used. For each question, users were 
first shown the question text and answer choices (in a randomized order) and were 



then asked to optimize the order for maximum accuracy by dragging selected items up 

or down the list. They completed this step (Round 1) without influence from any other 

participants.  

When enough users have finished their rankings, a Baseline Aggregated Ranking 

was calculated across the pool of users who have submitted their individual rankings. 

In a typical ASI approach, this baseline ranking would be shared across the full 

population of participants as a “stimulus” to evoke behavioral feedback. This feedback 
would be achieved by asking the individuals to consider the baseline aggregated 

ranking and to collaboratively improve its accuracy by making real-time adjustments. 

That said, the HyperRank system does NOT share the baseline ranking with the group. 

That’s because doing so would greatly limit the diversity of behavioral responses 

generated across the population of participants. After all, the full population would be 

reacting to the exact same baseline aggregated ranking. 

Instead, a new method was developed in which  a Probabilistic Ranking Model is 

computed from the baseline ranking data and is used to randomly generate unique 

probabilistic rankings to be shown to each participant. In this approach, the full set of 

unique probabilistic rankings are crafted algorithmically so they average out to the 

original baseline aggregated ranking. In this way, the population (when viewed as a 

whole) is stimulated with a distribution of rankings that together faithfully represent the 
baseline aggregated ranking. That said, when viewed on an individual level, the 

participants are each exposed to unique rankings. This effectively connects a group of 

users into a hyperswarm: each user observes and is asked to optimize a ranking that 

represents the combined rankings of only a few other users in the group. No user sees 

the full picture, but by connecting the group in this way, user sentiments propagate 

through the full population. Over a series of three rounds, the sentiments propagate 

through the population and the system amplifies the group’s collective intelligence.   

This method uses an innovative algorithm we call Probabilistic Rank Aggregation.  

It calculates a unique probabilistic ranking for each individual participant in the group 

based on the ranking response they submitted in the prior round in combination with (i)  

the Probabilistic Ranking Model generated for the prior round, and (ii) the individual 
rankings that have already been shown to users this new ranking round.  

As we’ll discuss in the sections that follow, this algorithm has three key features that 

contribute to the ability of the HyperRank system to amplify the collective accuracy of 

groupwise rankings: (i) it accurately samples the baseline rankings collected from the 

prior round, ensuring that the distribution of probabilistic rankings shared with 

participants averages out to the baseline aggregated ranking,  (ii) it reduces noise in the 

aggregation process by clipping outliers from baseline ranking data, and (iii) it 

challenges each user by presenting them with a customized probabilistic ranking that is 

more likely to disagree with their own ranking and thus evoke an informative 

behavioral response. In this way, this unique method elicits more diverse behavioral 

data from the group in each round without compromising the overall collective 
intelligence of the group’s prior rankings. We elaborate on the Probabilistic 

Aggregation algorithm in Section 2.2.   

Once a unique probabilistic ranking is calculated for a given user using Probabilistic 

Rank Aggregation, an animated robot arm appears on their screen and modifies that 

user’s submitted ranking (from the prior round), visually reordering their ranking into 

the unique probabilistic ranking that has been assigned to that user. Users are told that 



the aggregated ranking on their screen was generated algorithmically from a set of other 

users’ rankings in the previous round. The user is then tasked (in this new round) with 

adjusting the provided ranking to maximize accuracy by moving items up or down as 

they see fit. That said, there’s an important restriction – each user is only allocated a 

limited number of “moves” to adjust the ranking they are shown. The number of moves 

allocated to each user is limited to half of the moves that were required for the animated 

robot arm to adjust their prior ranking to the unique probabilistic ranking, rounded up. 
In this process, a “move” is counted as a single action of dragging an item up or down 

the ordered list from one position to any other. For example, moving an item from rank 

7 to rank 2 is one move, as is moving it from rank 5 to rank 6.  

The limitation of moves accomplishes two things: first, it means that users cannot 

simply revert their ranking back to their last-round ranking. Instead, they must prioritize 

which adjustments (i.e. moves) they believe will best optimize the accuracy of the 

ordering. This forced prioritization reveals conviction information to the HyperRank 

system for each individual user. After all, each user is driven to reveal their highest-

conviction rankings based on how they use their limited supply of moves. And because 

“a move” allows a user to reorder an item as far as they deem necessary up or down the 

list, users often prioritize movements that are the furthest from the location they believe 

would maximize accuracy. This tends to favor moves towards the extremes of the list 
(the top and bottom), revealing the items that have the highest or lowest confidence in 

satisfying the question asked. This is helpful, as ranked lists are generally used most by 

human groups to identify the topmost and bottommost items, with less importance often 

given to items in the middle.   

It’s important to note that users are not required to use all their moves in a given 

round, and when they choose not to use all their moves, this too reveals important 

conviction information to the HyperRank system. That’s because a decision by a user 

not to use all their available moves reveals their ambivalence between the ranking of 

the unmoved items in the provided probabilistic ranking and their own prior ranking 

(i.e. they have chosen NOT to return some items to the position they originally put 

those items in in despite having available moves to do so). When this happens, the 
HyperRank system algorithmically infers low conviction in their prior ranking of these 

items.  

After a user has finished adjusting the provided probabilistic ranking, the process 

repeats for Round 3. Once again, each user is provided with a unique ranking (this time 

based on the collected responses for Round 2) and once again each user is given a 

limited number of moves to optimize the provided ranking. This process again evokes 

powerful behavioral information from each user, indicating their varying levels of 

confidence and conviction with respect to the placement of various items in the list.  

Finally, the confidence and conviction information (across all rounds) is used to 

compute a Final Group Ranking based on the unique behavior of all users across the 

full process. This unique method is detailed in Section 2.3.  



 
Fig. 1. Views of a user proceeding through the first question in a HyperRank session. From top-

left to top-right, then bottom-left to bottom-right: (i) the user logs into the platform with a 

username, (ii) the user is presented with a question and a list of items and is asked to order the 

list (iii) the user orders those items in 45 seconds or less and submits their ranking. (iv) when 

enough users have submitted their answers, the next round begins. (v) each user is told their 

ranking was combined with some number of other user’s rankings, and (vi) is then presented a 

new ranking that was created by the group, which they must optimize using only a handful of 

moves. Steps (iii) to (vi) repeat for round 2, and only step (iii) repeats for round 3.  

 

 



2.2 Probabilistic Rank Aggregation 

The unique collective intelligence method described herein requires that during each 

new round of groupwise ranking, the platform generates a probabilistic distribution of 

aggregated rankings (based on prior round data) and sends a Unique Probabilistic 

Ranking to each user for consideration in the new round. To achieve this, the following 

steps are performed: (i) calculate an Aggregation Matrix from the response data 

received so far, (ii) generate a candidate ranking from this Aggregation Matrix using 

the Probabilistic Aggregation approach outlined in section 2.2.2, (iii) generate a Unique 

Probabilistic Ranking by repeating step (ii) to generate a set of candidate rankings and  

selecting the candidate ranking that is the furthest distance from the targeted user’s 

previously submitted ranking. Each of these steps are described in detail in the sections 

that follow. A high-level flowchart of this process is shown in Figure 2.  
 

 
Fig. 2. The diagram above shows the Probabilistic Aggregation Model generating 

Unique Probabilistic Rankings for 10 users in a HyperRank session from the Received 

Rankings of those users. First, the Received Rankings are converted into an 

Aggregation Matrix. Then, Unique Probabilistic Rankings are generated for each user 

from this Aggregation Matrix. There are two important things to note about the Unique 
Probabilistic Rankings generated here: first, each user received a different ranking than 

the one they submitted, and second, the Unique Probabilistic Rankings have the same 

group-level overall mean ranking and ranking distribution as the Aggregation Matrix.  

 



2.2.1 Calculation of the Aggregation Matrix 

For each round, a Aggregation Matrix (E) is calculated for the submitted answers 

that describes the degree of confidence the group collectively expressed in support of 

each item being placed at each rank. The matrix has N rows and N columns (where N 

is the number of items being ranked), and each cell in the matrix contains a single 

number. The higher the number in the cell, the greater the group’s collective conviction 

that the item should be ranked in that location. Each row in this matrix represents a 

given rank (e.g. 1st) and each column represents a given item (e.g. “Apple”). So, 

element E(3,2) represents the conviction with which Banana (item 2) is ranked 3rd.  

In the first round this number represents the simple fraction of users that responded 

with that answer in that rank, but in future rounds other behavioral information is taken 

into account to weight some users higher or lower than others for particular items in 
particular ranks based on the conviction detected or inferred for each user when ranking 

that item in that location. This behavioral information includes, for example, the prior 

round ranking data collected for each user, the adjustments that user made to the group 

ranking in the current round, and the number of moves that user had left (i.e. chose not 

to use) at the completion of that round.  

An example Round 1 aggregation matrix is shown in the second step of Figure 2. In 

this example, the group was confident that Apple should be ranked first: 100% of users 

ranked Apple in 1st place, and 0% of users gave any other answer for first place. On the 

other hand, the group was divided on the best location for Cherry, with 30% of users 

ranking Cherry in 2nd place, 40% of users ranking Cherry in 3rd place, and 30% of users 

ranking Cherry in 4th place. In future rounds these values would also reflect the relative 
conviction expressed by users for particular items ranked in particular locations.  In this 

way, the Aggregation Matrix is a probabilistic representation of the aggregated 

weighted opinions of the population of users.  

 

2.2.2 Probabilistic Aggregation 

Now that we have an Aggregation Matrix that represents the group’s aggregated 

opinions, we can use this matrix to generate a distribution of unique individual rankings 

to be sent to the population of users, this distribution being probabilistically equivalent 

(as a set) to the aggregated collective ranking expressed by the group.  For each 

individual user, this is done by generating a candidate ranking to show to that user. It  

is performed in three steps: first removing outliers, then calculating the probability that 

each item should be selected in each rank, and then selecting the items from this matrix 

to fill each rank in the unique ranking generated for that user.  

First, outliers in the data are dynamically removed from the group’s Aggregation 

Matrix. This process identifies data lying on the edges of each item’s range of rankings 

and moves these outliers closer to the center of the rankings. In current implementation, 

“outliers” are defined as any ranking that is greater than the 90th percentile of high or 
low rankings of the item. When outliers are detected, their rankings are set to the 90th 

percentile. For example, consider a set of 12 responses: 10 out of 12 users ranked 

“Apple” between the 2nd and 4th ranks, one user ranked Apple 1st and one user ranked 

Apple 6th. The Aggregation Matrix would show that the 1st and 6th-place rank 

frequency entries for Apple are respectively in the 91st percentile of high and low 

rankings for item Apple. The values for these entries would be added to the entries for 



2nd and 4th places respectively and then set to 0. This mechanism cleans the 

Aggregation Matrix of outliers by scaling their responses away from extremes, while 

still recognizing the ordinal nature of rankings (i.e., outliers are not simply removed, 

they are instead moved inward towards the mean until they no longer fall outside the 

90th percentile). 

Next, a Selection Probability Matrix (S) is calculated from this cleaned Aggregation 

Matrix that indicates the rough probability with which each item should be shown in 
each rank to a new user in the new round. Feedback is used to ensure that the frequency 

with which items are shown in each rank is close to the frequency with which they were 

received in that rank. This feedback algorithm works as follows: it takes as input three 

NxN-shaped Rank-Frequency Matrices: the Aggregation Matrix collected from users 

so far in the previous round (E), a Aggregation Matrix of the rankings presented to 

users already for the new round (H), and the latest Aggregation Matrix of the user for 

whom this unique aggregation is being generated (U).  

 𝐹 =  𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑀𝑎𝑥(𝐸 −  𝐻, 0))  3 

 𝑆 =  𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑀𝑎𝑥(𝐹 −  𝑈 / 𝑐, 0 )  +  𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∗ 𝐸) 4 

Equation 3  calculates the feedback term to show rank-items in a way that approaches 

the received distribution. Equation 4 reduces the likelihood of giving the user rankings 

that match their submitted rankings, or order to promote each user’s rankings being 

challenged by the group’s rankings. The constant c can be set to any number: larger 

numbers reduce the frequency that users are presented with rankings that challenge their 
own, and smaller numbers increase this frequency. In practice, c is set to the number of 

responses received to this round so far, so that the “-U / c” term explicitly cancels this 

user’s own contribution to the Aggregation Matrix. The “epsilon*E” term ensures that 

there’s a small but nonzero chance of finding each item in each ranking in which it was 

received. This helps prevent issues that arise when selecting items in the next step. 

Epsilon is a tiny, positive, nonzero value. The final Selection Probability matrix entries 

are clamped to be greater than 0 and are normalized so that they sum to 1. 

Finally, the selection probability matrix is used to calculate a list of items to show 

the end user. Importantly, items can be selected only once, and each item must be 

present in the final list: in this way, only the order of the list changes between rounds, 

rather than the content of the list.  
To ensure that the topmost and bottommost ranks are selected with maximum 

fidelity to the selection matrix, items are selected from most extreme ranks to least 

extreme ranks, starting from the top. This is done by alternately iterating down the 

ranks, starting from rank 1 and then rank n, and working towards the center of the list. 

For example, with 7 items, the ranks considered in order would be: [1, 7, 2, 6, 3, 5, 4].  

For a given rank n, the probability of selecting each remaining item is calculated as 

the frequency of that item in the nth position and all positions more extreme than n. In 

the example above, for rank 3, the probabilities of finding each item in ranks 1, 2, and 

3 are summed up and normalized. One item is selected from the remaining set of items 

with these normalized probabilities. Finally, this item is removed from the list of 

remaining items and the process is repeated until no items (and therefore no ranks) 
remain.  

 



2.2.3 Final Ranking Selection 

Now that we have an algorithm for probabilistically generating rankings with high 

fidelity, we need to use it to create a Unique Probabilistic Ranking for the user. While 

it’s possible to use the ranking that is generated from Probabilistic Aggregation as the 

Final Ranking, the generated ranking might be identical to the user’s ranking from the 

previous round due to the probabilistic nature of the algorithm. To ensure that the 

ranking shown to the user challenges their last-round ranking, multiple candidate 

rankings are generated using Probabilistic Aggregation and the ranking that challenges 

the user the most is selected as the Unique Probabilistic Ranking to be shown to the 

user. The degree to which a ranking ‘challenges’  the user is calculated as the distance 

between the user’s last-round ranking and each generated ranking. This distance is 

measured as a combination of: (i) the number of moves that would be required to change 
one ranking into the other ranking, (ii) the average move distance of those moves, and 

(iii) the average distance of moves from the edges of the list. In this study, 5 candidate 

rankings were generated, and the Unique Aggregated Ranking shown to each user was 

selected in this way. 

 

2.3 Calculating the Collective Ranking 

The output of the HyperRank system is a collective ranking that represents the ranking 

the group could best agree upon. This collective ranking is calculated for each round as 

the argument-sorting over each item n of the rank-weighted sum of the Aggregation 

Matrix for that round, as shown in Equation 5.  

 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 =  𝐴𝑟𝑔𝑆𝑜𝑟𝑡𝑖(∑ 𝐸𝑢(𝑛, 𝑖) ∗ 𝑛)𝑛   3 

The Round 1 final collective ranking is equivalent to a WoC ranking, because users 

were given enough moves to create whatever ranking they wanted and created their 

ranking without any influence from other users or the HyperRank system.  

 

2.4 Study 

To quantify the effectiveness of the unique collaborative ranking methods described 

above, a formal set of human tests were conducted using human subjects, each of whom 

was sourced through the Amazon Mechanical Turk service and paid a small 

participation fee for their time. . These participants were divided into six groups of 

approximately 25 members, each group assigned to one of six different experimental 

sessions. The users assigned to each session logged into a dedicated software platform 

at an assigned time for that session. Each session lasted approximately 15 minutes.  

In each of the six experimental sessions, the group of approximately 25 members 

was tasked answering a set of six general-knowledge ranking questions. While the six 
questions used in each of the six different experimental sessions were not identical, they 

followed a very similar structure and format. Specifically, there were four types of 

question used in this study: “Rank these US states by average precipitation (in inches, 

including rain and snow)”, “Rank these US states by fraction of democrat voters”, 

“Rank these US states by average temperature”, and “Rank these countries by Gross 



Domestic Product”. Each question contained between six and nine items to be ranked. 

No two questions contained same set of items, and no question was repeated.   

      Upon completion of the six experimental sessions, each with six ranking questions, 

a total of 36 unique ranking tasks were conducted. All participants were instructed to 

answer the questions to the best of their ability but not to look up the answers. Sessions 

lasted between 12 and 16 minutes each.  Users were paid the same amount for their 

time regardless of their performance, so there was no motivation for cheating. In 
addition, the tasks were performed under significant time pressure (only 45 seconds per 

round) so there was not sufficient time to cheat by looking up answers.   

 

2.5 Grading 

The correct ranking Rcorrect for each question was calculated from the data and was used 

to calculate the Rank Accuracy of each ranking Ri. The Rank Quality, as shown in 

Equation 1, is a score between 0% and 100% that measures the Root Mean Squared 

Error (RMSE) of the ranking compared to the worst and best possible rankings: [Eq 2]. 

Ri in this equation represents a ranked list created by an individual or the group 

consisting of a set of answers N, where Ri(N) is the ordinal ranking of answer N. For 

example, a ranking: [1st: Apple, 2nd: Banana, 3rd: Cherry] would be represented as Ri = 

[Apple: 1, Banana: 2, Cherry: 3], and Ri(Banana) = 2. Rcorrect is the correct ordinal 

ranking to each question, and Rworst is the worst ordinal ranking (i.e. the reverse of 

Rcorrect).  

 𝑅𝑀𝑆𝐸(𝑅𝑖) =  𝑅𝑀𝑆𝐸(𝑅𝑖 , 𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡) =
1

𝑛
√∑ [𝑅𝑖(𝑛) −  𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑛)]2

𝑛  1 

 

 𝑅𝑎𝑛𝑘𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑅𝑖) =
𝑅𝑀𝑆𝐸(𝑅𝑖)−𝑅𝑀𝑆𝐸(𝑅𝑤𝑜𝑟𝑠𝑡)

𝑅𝑀𝑆𝐸(𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡)− 𝑅𝑀𝑆𝐸(𝑅𝑤𝑜𝑟𝑠𝑡)
 2  

This metric was chosen for two reasons: first, it penalizes answers that are farther away 

from the correct location, and second, it allows comparisons across questions with 

different numbers of items. Without this normalization to a [0,1] scale, questions with 

more items would have a higher average RMSE simply due to the number of items and 

possibility for items to be ranked further from their correct locations.  
The average Rank Accuracy of individual rankings made in the first round was also 

calculated using this same approach to quantify the quality of rankings created by 

individuals in isolation. To do so, the Rank Accuracy of each ranking made by each 

individual was tallied and then averaged.  

Finally, three subsets of each ranking were graded using this approach: the full 

ranking, the top answer, and the bottom answer. To calculate the Rank Accuracy of the 

top and bottom answers, the ranked lists were subsetted to only the top and bottom 

answers respectively, and then the Rank Accuracy of only those 1-item lists were 

calculated. A score of 100% for the Top metric, for example, indicates that the ranking’s 

top answer was correct, while a ranking in which the top answer was actually the 3rd-

most correct answer in the correct list out of a total of 9 items would receive a score of 

75%.  



3 Results 

The group’s collective ranking after each of the three rounds was calculated and 
compared to the Average Individual Rank Accuracy. Figure 2 shows the Rank 

Accuracy of the average individual (before aggregation) and then of the group’s 

collective rankings after each round, where Round 1 is equivalent to a WoC 

aggregation. The average individual scored a Rank Accuracy of 47.6% in this question 

set, while simply collecting a set of Round-1 rankings (WoC) improved this to a 59.5% 

Rank Accuracy.  Over each subsequent round in HyperRank, the Rank Accuracy further 

improved, leading to a 64.2% Rank Accuracy by the end of Round 3. As shown in 

Table 2, HyperRank’s improvement over the WoC effect was highly statistically 

significant (p<0.01), as measured using a paired t-test over the full sample of 36 

questions. We can therefore conclude that the HyperRank system allowed this group to 

create more accurate rankings to these questions in a way not explainable by random 

chance alone.  
Next, we examined the Rank Accuracy of the top- and bottom-ranked items created 

in each aggregation. Again, each subsequent round yielded an increasing Rank 

Accuracy: the top answer from the round 3 HyperRank aggregation (84.1%) 

significantly outperformed the top answer from the round 1 WoC aggregation  (77.7%, 

p<0.05), and the bottom answer from round 3 (82.4%) outperformed the round 1 WoC 

aggregation (77.5%, p=0.065), though this effect was not significant at the 5% alpha 

level.  

As compared to the traditional WoC effect, which showed a 11.9% improvement 

over the average individual's full rankings on this question set, the HyperRank system 

improved over the individuals by a further 4.7% (for a total improvement of 16.6%), 

equivalent to amplifying the WoC effect by 39.5%.  
  

 

Fig. 2. Bar plot showing the Rank Accuracy after each round for each different rank graded. 



Table 2. Rank Accuracy of Wisdom of the Crowd compared to HyperRank 

Ranks graded Wisdom of Crowd 
Rank Accuracy 

HyperRank 
Rank Accuracy 

% Increase in Rank 
Accuracy 

p-value 

All 59.5% 64.2% 8.1% 0.002 

Top 77.7% 84.1% 8.2% 0.033 

Bottom 77.5% 82.4% 6.3% 0.065 

 

Table 3 details the statistical comparisons between HyperRank’s final rankings and the 

Average Individual rankings across all metrics. Each metric (all of the ranks, the top-

ranked item, and the bottom-ranked item) was significantly more accurate when using 

HyperRank as compared to the average individual (p<0.001 in all cases), providing 

strong evidence that HyperRank produces better rankings than an average individual.  

Table 3. Significance test results against average individual for different ranks graded. 

Rank graded Average Individual 
Rank Accuracy 

HyperRank 
Rank Accuracy 

% Increase in Rank 
Accuracy 

p-value 

All 47.6% 64.2% 34.9% < 0.001 

Top 68.0% 84.1% 23.7% < 0.001 

Bottom 67.6% 82.4% 21.9% < 0.001 

 

3.1 Rank Improvement by Question 

In the beginning of Section 3, we found that HyperRank improves the average Rank 

Accuracy for the three ranking subsets graded. To better understand whether this 

improvement was due to a large improvement over just a few questions or a broader 

improvement across many questions, we analyzed how HyperRank changed the Rank 
Accuracy of each question in the question set.  

Table 4 shows the change in Rank Accuracy scores from the WoC to HyperRank, as 

categorized by number of questions in which the Rank Accuracy scores improved (i.e. 

HyperRank outperformed WoC), stayed the same, or worsened. When all ranks were 

graded, HyperRank’s Rank Accuracy improved over the WoC ranking 20 times out of 

36 (56%), made no change 10 times (28%), and worsened only 6 times (17%). Using a 

Sign Test, we found HyperRank was significantly more likely to improve the Rank 

Accuracy over the WoC than it was to make it worse for all ranks (fraction improved = 

20/26 = 76.9%, p=0.005) on a single question.  

For the Top (fraction improved = 4/4 = 100.0%, p=0.063) and Bottom (fraction 

improved = 6/8 = 75.0%, p=0.145) ranks, insignificant evidence was found to show 
HyperRank improved the Rank Accuracy over the WoC, in part due to a low frequency 

of cases in which an improvement can even be made.  



Table 4. Change in Rank Accuracy from WoC to HyperRank, summarized by number of 

questions in each category. 

Rank graded Increased Stayed the Same Decreased Sign Test p-value 

All 20 10 6 0.005 

Top 4 32 0 0.063 

Bottom 6 28 2 0.145 

 

3.2 Time Analysis  

Each session in this study required between 12 and 16 minutes to complete, and on 

average took 13.8 minutes to complete, equivalent to 2.3 minutes per question and  46 

seconds per round. Swarm, another collective intelligence interface that uses ASI 

technology, takes about 1 minute per question, but would use N-1 questions to rank N 

items using a procedure of elimination [29]. There were on average 7.4 items in each 

question in this study, for an average time estimate of 6.4 minutes per question using 

the Swarm platform. As a result, HyperRank generated collective rankings 64% quicker 

than the best alternative ASI tool: Swarm.  

 

4 Conclusions 

In this work we outlined a proof-of-concept system for collective ranking using the 

principles of Artificial Swarm Intelligence and Hyperswarms, called HyperRank. We 

conducted the first study of a hyperswarm system with real human users (to the author’s 

knowledge) and demonstrated that HyperRank enables groups of users to generate 

collective rankings quickly and with a high degree of accuracy on a set of general-

knowledge questions. The full collective rankings that were generated with HyperRank 

significantly outperformed both the average individual (p<0.001) and the Wisdom of 

the Crowd (p<0.01), and the Wisdom of the Crowd effect was amplified by over 40% 
when using HyperRank. We further demonstrated that these effects held for not only 

the full rankings, but also for the top- and bottom-ranked items, indicating that 

HyperRank could be used to accurately estimate the top and bottom-ranked items as 

well as to generate full rankings of items. Finally, we showed that this approach to 

collective ranking is 64% faster than the current state of the art ASI application, making 

it easier to use in practice.  

 

Interestingly, the accuracy of the collective rankings increased through each round; 

would the groups have reached even better answers if given more rounds for each 

question? After what number of rounds does the marginal accuracy tend to 0, and how 

can administrators of these sessions make tradeoffs between this marginal accuracy 
gain and the marginal time taken for each round? Future work may run sessions with 

more rounds to investigate.  



While this study showed promising initial results, it barely scratched the surface of 

the behavioral data collected in this platform and doesn’t fully explain why or how the 

system works: future studies should address this. Future work will apply this system to 

other question types, including forecasting and sentiment (e.g. in market research). 

Another large open question is synchronicity: the current experiment was conducted 

using synchronous groups, but the platform has been built to enable groups to 

asynchronously create group rankings. Asynchronous capability would help to 
dramatically reduce logistical barriers to using ASI tools, so future experiments should 

explore this capability and both time savings and whether asynchronous collaboration 

yields similar accuracy improvements over the WoC. Finally, future work could also 

compare to Delphi or other round-based aggregation techniques.  
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